Abstract

It is shown that the decay of the weakly coupled to radiation (dark) modes of subwavelength plasmonic nanostructures is strongly nonexponential. Their lifetime is overestimated by conventional exponential relaxation time obtained in the standard Markovian approximation. These effects are manifestations of the strong dispersion and near-field feedback. The developed theoretical framework introduces an ensemble of local relaxation degrees of freedom coupled to plasmonic mode in order to describe its decay due to material losses. The macroscopic description of the decay process leads to the specific memory function of the system, evaluated from the modal and material dispersions of the plasmonic nanostructure. Proper knowledge of the relaxation behavior is vital for various applications relying on light-matter interactions of emitters with nanoscale objects, such as fluorescence manipulation, bio-imaging, sensing, spasers, sub-diffraction optics, Raman scattering, and quantum optics.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  2. P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
    [CrossRef] [PubMed]
  3. J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry‐Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449–451 (1996).
    [CrossRef]
  4. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
    [CrossRef] [PubMed]
  5. L. A. Blanco and F. J. García de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B69(20), 205414 (2004).
    [CrossRef]
  6. Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” e-print arXiv:0910.3981.
  7. Z. Jacob, J. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
    [CrossRef]
  8. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
    [CrossRef] [PubMed]
  9. A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84(2), 023807 (2011).
    [CrossRef]
  10. A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett.102(23), 233901 (2009).
    [CrossRef] [PubMed]
  11. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
    [CrossRef] [PubMed]
  12. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
    [CrossRef]
  13. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005).
    [CrossRef] [PubMed]
  14. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  15. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
    [CrossRef]
  16. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
    [CrossRef]
  17. M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12(2), 024004 (2010).
    [CrossRef]
  18. J. K. Kitur, V. A. Podolskiy, and M. A. Noginov, “Stimulated emission of surface plasmon polaritons in a microcylinder cavity,” Phys. Rev. Lett.106(18), 183903 (2011).
    [CrossRef] [PubMed]
  19. I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett.83(12), 2429–2432 (1999).
    [CrossRef]
  20. G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photonics Rev.2(3), 125–135 (2008).
    [CrossRef]
  21. P. Ginzburg, A. Hayat, N. Berkovitch, and M. Orenstein, “Nonlocal ponderomotive nonlinearity in plasmonics,” Opt. Lett.35(10), 1551–1553 (2010).
    [CrossRef] [PubMed]
  22. J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit,” J. Opt. Soc. Am. B24(8), 1968–1980 (2007).
    [CrossRef]
  23. A. V. Kildishev, W. Cai, U. K. Chettiar, and V. M. Shalaev, “Transformation optics: approaching broadband electromagnetic cloaking,” New J. Phys.10(11), 115029 (2008).
    [CrossRef]
  24. S. A. Maier, Plasmonics: Fundamentals and Applications, New York, Springer, 2007.
  25. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  26. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005).
    [CrossRef]
  27. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
    [CrossRef]
  28. B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C111(31), 11516–11527 (2007).
    [CrossRef]
  29. N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett.10(4), 1405–1408 (2010).
    [CrossRef] [PubMed]
  30. P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles,” Nano Lett.11(6), 2329–2333 (2011).
    [CrossRef] [PubMed]
  31. A. Alù and N. Engheta, “Guided propagation along quadrupolar chains of plasmonic nanoparticles,” Phys. Rev. B79(23), 235412 (2009).
    [CrossRef]
  32. M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009).
    [CrossRef] [PubMed]
  33. M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett.9(1), 399–404 (2009).
    [CrossRef] [PubMed]
  34. I. D. Mayergoyz, Z. Zhang, and G. Miano, “Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles,” Phys. Rev. Lett.98(14), 147401 (2007).
    [CrossRef] [PubMed]
  35. L. Fonda, G. C. Ghirardi, and A. Rimini, “Decay theory of unstable quantum systems,” Rep. Prog. Phys.41(4), 587–631 (1978).
    [CrossRef]
  36. J. Seke and W. N. Herfort, “Deviations from exponential decay in the case of spontaneous emission from a two-level atom,” Phys. Rev. A38(2), 833–840 (1988).
    [CrossRef] [PubMed]
  37. C. Cao, J. Tian, and H. Cao, “Non-Markovian correlation function and direct analysis of spontaneous emission of an excited two-level atom,” Phys. Lett. A303(5-6), 318–327 (2002).
    [CrossRef]
  38. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999), 3rd ed.
  39. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011).
    [CrossRef] [PubMed]
  40. R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A3(3), 233–245 (1970).
    [CrossRef]
  41. E. Feigenbaum and M. Orenstein, “Ultrasmall volume plasmons, yet with complete retardation effects,” Phys. Rev. Lett.101(16), 163902 (2008).
    [CrossRef] [PubMed]
  42. N. A. R. Bhat and J. E. Sipe, “Hamiltonian treatment of the electromagnetic field in dispersive and absorptive structured media,” Phys. Rev. A73(6), 063808 (2006).
    [CrossRef]
  43. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge 1997).
  44. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  45. I. I. Smolyaninov, “Quantum fluctuations of the refractive index near the interface between a metal and a nonlinear dielectric,” Phys. Rev. Lett.94(5), 057403 (2005).
    [CrossRef] [PubMed]
  46. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano4(9), 5269–5276 (2010).
    [CrossRef] [PubMed]
  47. C. Benkert, M. O. Scully, and G. Süssmann, “Memory correlation effects on quantum noise in lasers and masers,” Phys. Rev. A41(11), 6119–6128 (1990).
    [CrossRef] [PubMed]

2011

A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84(2), 023807 (2011).
[CrossRef]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

J. K. Kitur, V. A. Podolskiy, and M. A. Noginov, “Stimulated emission of surface plasmon polaritons in a microcylinder cavity,” Phys. Rev. Lett.106(18), 183903 (2011).
[CrossRef] [PubMed]

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles,” Nano Lett.11(6), 2329–2333 (2011).
[CrossRef] [PubMed]

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011).
[CrossRef] [PubMed]

2010

P. Ginzburg, A. Hayat, N. Berkovitch, and M. Orenstein, “Nonlocal ponderomotive nonlinearity in plasmonics,” Opt. Lett.35(10), 1551–1553 (2010).
[CrossRef] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano4(9), 5269–5276 (2010).
[CrossRef] [PubMed]

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett.10(4), 1405–1408 (2010).
[CrossRef] [PubMed]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12(2), 024004 (2010).
[CrossRef]

Z. Jacob, J. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

2009

A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett.102(23), 233901 (2009).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Guided propagation along quadrupolar chains of plasmonic nanoparticles,” Phys. Rev. B79(23), 235412 (2009).
[CrossRef]

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009).
[CrossRef] [PubMed]

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett.9(1), 399–404 (2009).
[CrossRef] [PubMed]

2008

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photonics Rev.2(3), 125–135 (2008).
[CrossRef]

A. V. Kildishev, W. Cai, U. K. Chettiar, and V. M. Shalaev, “Transformation optics: approaching broadband electromagnetic cloaking,” New J. Phys.10(11), 115029 (2008).
[CrossRef]

E. Feigenbaum and M. Orenstein, “Ultrasmall volume plasmons, yet with complete retardation effects,” Phys. Rev. Lett.101(16), 163902 (2008).
[CrossRef] [PubMed]

2007

B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C111(31), 11516–11527 (2007).
[CrossRef]

I. D. Mayergoyz, Z. Zhang, and G. Miano, “Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles,” Phys. Rev. Lett.98(14), 147401 (2007).
[CrossRef] [PubMed]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit,” J. Opt. Soc. Am. B24(8), 1968–1980 (2007).
[CrossRef]

2006

N. A. R. Bhat and J. E. Sipe, “Hamiltonian treatment of the electromagnetic field in dispersive and absorptive structured media,” Phys. Rev. A73(6), 063808 (2006).
[CrossRef]

2005

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005).
[CrossRef]

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005).
[CrossRef] [PubMed]

I. I. Smolyaninov, “Quantum fluctuations of the refractive index near the interface between a metal and a nonlinear dielectric,” Phys. Rev. Lett.94(5), 057403 (2005).
[CrossRef] [PubMed]

2004

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

L. A. Blanco and F. J. García de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B69(20), 205414 (2004).
[CrossRef]

2003

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

2002

C. Cao, J. Tian, and H. Cao, “Non-Markovian correlation function and direct analysis of spontaneous emission of an excited two-level atom,” Phys. Lett. A303(5-6), 318–327 (2002).
[CrossRef]

1999

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett.83(12), 2429–2432 (1999).
[CrossRef]

1996

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry‐Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449–451 (1996).
[CrossRef]

1990

C. Benkert, M. O. Scully, and G. Süssmann, “Memory correlation effects on quantum noise in lasers and masers,” Phys. Rev. A41(11), 6119–6128 (1990).
[CrossRef] [PubMed]

1988

J. Seke and W. N. Herfort, “Deviations from exponential decay in the case of spontaneous emission from a two-level atom,” Phys. Rev. A38(2), 833–840 (1988).
[CrossRef] [PubMed]

1978

L. Fonda, G. C. Ghirardi, and A. Rimini, “Decay theory of unstable quantum systems,” Rep. Prog. Phys.41(4), 587–631 (1978).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1970

R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A3(3), 233–245 (1970).
[CrossRef]

1946

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Alù, A.

A. Alù and N. Engheta, “Guided propagation along quadrupolar chains of plasmonic nanoparticles,” Phys. Rev. B79(23), 235412 (2009).
[CrossRef]

A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett.102(23), 233901 (2009).
[CrossRef] [PubMed]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Barrier, D.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry‐Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449–451 (1996).
[CrossRef]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Belov, P. A.

A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84(2), 023807 (2011).
[CrossRef]

Benkert, C.

C. Benkert, M. O. Scully, and G. Süssmann, “Memory correlation effects on quantum noise in lasers and masers,” Phys. Rev. A41(11), 6119–6128 (1990).
[CrossRef] [PubMed]

Berkovitch, N.

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles,” Nano Lett.11(6), 2329–2333 (2011).
[CrossRef] [PubMed]

P. Ginzburg, A. Hayat, N. Berkovitch, and M. Orenstein, “Nonlocal ponderomotive nonlinearity in plasmonics,” Opt. Lett.35(10), 1551–1553 (2010).
[CrossRef] [PubMed]

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett.10(4), 1405–1408 (2010).
[CrossRef] [PubMed]

Bhat, N. A. R.

N. A. R. Bhat and J. E. Sipe, “Hamiltonian treatment of the electromagnetic field in dispersive and absorptive structured media,” Phys. Rev. A73(6), 063808 (2006).
[CrossRef]

Blanco, L. A.

L. A. Blanco and F. J. García de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B69(20), 205414 (2004).
[CrossRef]

Boltasseva, A.

Z. Jacob, J. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Bondarenko, O.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Cai, W.

A. V. Kildishev, W. Cai, U. K. Chettiar, and V. M. Shalaev, “Transformation optics: approaching broadband electromagnetic cloaking,” New J. Phys.10(11), 115029 (2008).
[CrossRef]

Cao, C.

C. Cao, J. Tian, and H. Cao, “Non-Markovian correlation function and direct analysis of spontaneous emission of an excited two-level atom,” Phys. Lett. A303(5-6), 318–327 (2002).
[CrossRef]

Cao, H.

C. Cao, J. Tian, and H. Cao, “Non-Markovian correlation function and direct analysis of spontaneous emission of an excited two-level atom,” Phys. Lett. A303(5-6), 318–327 (2002).
[CrossRef]

Chen, C. H.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett.9(1), 399–404 (2009).
[CrossRef] [PubMed]

Chettiar, U. K.

A. V. Kildishev, W. Cai, U. K. Chettiar, and V. M. Shalaev, “Transformation optics: approaching broadband electromagnetic cloaking,” New J. Phys.10(11), 115029 (2008).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Chu, M. W.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett.9(1), 399–404 (2009).
[CrossRef] [PubMed]

Costard, E.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry‐Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449–451 (1996).
[CrossRef]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Davis, C. C.

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett.83(12), 2429–2432 (1999).
[CrossRef]

de Vries, T.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

de Waardt, H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Deng, J. P.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett.9(1), 399–404 (2009).
[CrossRef] [PubMed]

Drezek, R.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005).
[CrossRef] [PubMed]

Eijkemans, T. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Engheta, N.

A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett.102(23), 233901 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Guided propagation along quadrupolar chains of plasmonic nanoparticles,” Phys. Rev. B79(23), 235412 (2009).
[CrossRef]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Fainman, Y.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Feigenbaum, E.

E. Feigenbaum and M. Orenstein, “Ultrasmall volume plasmons, yet with complete retardation effects,” Phys. Rev. Lett.101(16), 163902 (2008).
[CrossRef] [PubMed]

Feng, L.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Floris Van Driel, A.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Fonda, L.

L. Fonda, G. C. Ghirardi, and A. Rimini, “Decay theory of unstable quantum systems,” Rep. Prog. Phys.41(4), 587–631 (1978).
[CrossRef]

Fredkin, D. R.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005).
[CrossRef]

García de Abajo, F. J.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett.9(1), 399–404 (2009).
[CrossRef] [PubMed]

L. A. Blanco and F. J. García de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B69(20), 205414 (2004).
[CrossRef]

Geluk, E. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Gérard, J. M.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry‐Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449–451 (1996).
[CrossRef]

Ghirardi, G. C.

L. Fonda, G. C. Ghirardi, and A. Rimini, “Decay theory of unstable quantum systems,” Rep. Prog. Phys.41(4), 587–631 (1978).
[CrossRef]

Ginzburg, P.

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles,” Nano Lett.11(6), 2329–2333 (2011).
[CrossRef] [PubMed]

P. Ginzburg, A. Hayat, N. Berkovitch, and M. Orenstein, “Nonlocal ponderomotive nonlinearity in plasmonics,” Opt. Lett.35(10), 1551–1553 (2010).
[CrossRef] [PubMed]

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett.10(4), 1405–1408 (2010).
[CrossRef] [PubMed]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Gray, S. K.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009).
[CrossRef] [PubMed]

Guyot-Sionnest, P.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009).
[CrossRef] [PubMed]

Halas, N.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005).
[CrossRef] [PubMed]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Hayat, A.

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Herfort, W. N.

J. Seke and W. N. Herfort, “Deviations from exponential decay in the case of spontaneous emission from a two-level atom,” Phys. Rev. A38(2), 833–840 (1988).
[CrossRef] [PubMed]

Hill, M. T.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Irman, A.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Jacob, Z.

Z. Jacob, J. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Khlebtsov, B. N.

B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C111(31), 11516–11527 (2007).
[CrossRef]

Khlebtsov, N. G.

B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C111(31), 11516–11527 (2007).
[CrossRef]

Khurgin, J. B.

Kildishev, A. V.

A. V. Kildishev, W. Cai, U. K. Chettiar, and V. M. Shalaev, “Transformation optics: approaching broadband electromagnetic cloaking,” New J. Phys.10(11), 115029 (2008).
[CrossRef]

Kim, J.

Z. Jacob, J. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Kitur, J. K.

J. K. Kitur, V. A. Podolskiy, and M. A. Noginov, “Stimulated emission of surface plasmon polaritons in a microcylinder cavity,” Phys. Rev. Lett.106(18), 183903 (2011).
[CrossRef] [PubMed]

Kivshar, Y. S.

A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84(2), 023807 (2011).
[CrossRef]

Kuszelewicz, R.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry‐Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449–451 (1996).
[CrossRef]

Kwon, S.-H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Lee, C. H.

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett.83(12), 2429–2432 (1999).
[CrossRef]

Lee, T. W.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009).
[CrossRef] [PubMed]

Lee, Y.-H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

Liu, M.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009).
[CrossRef] [PubMed]

Lodahl, P.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Lomakin, V.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Loo, C.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005).
[CrossRef] [PubMed]

Loudon, R.

R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A3(3), 233–245 (1970).
[CrossRef]

Lowery, A.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005).
[CrossRef] [PubMed]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Manin, L.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry‐Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449–451 (1996).
[CrossRef]

Marzin, J. Y.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry‐Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449–451 (1996).
[CrossRef]

Mayergoyz, I. D.

I. D. Mayergoyz, Z. Zhang, and G. Miano, “Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles,” Phys. Rev. Lett.98(14), 147401 (2007).
[CrossRef] [PubMed]

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005).
[CrossRef]

Miano, G.

I. D. Mayergoyz, Z. Zhang, and G. Miano, “Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles,” Phys. Rev. Lett.98(14), 147401 (2007).
[CrossRef] [PubMed]

Mizrahi, A.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Mou, C. Y.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett.9(1), 399–404 (2009).
[CrossRef] [PubMed]

Myroshnychenko, V.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett.9(1), 399–404 (2009).
[CrossRef] [PubMed]

Naik, G. V.

Z. Jacob, J. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Narimanov, E. E.

Z. Jacob, J. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Nevet, A.

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles,” Nano Lett.11(6), 2329–2333 (2011).
[CrossRef] [PubMed]

Nezhad, M. P.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Nikolaev, I. S.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Noginov, M. A.

J. K. Kitur, V. A. Podolskiy, and M. A. Noginov, “Stimulated emission of surface plasmon polaritons in a microcylinder cavity,” Phys. Rev. Lett.106(18), 183903 (2011).
[CrossRef] [PubMed]

Nordlander, P.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano4(9), 5269–5276 (2010).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Nötzel, R.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Oei, Y.-S.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Orenstein, M.

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles,” Nano Lett.11(6), 2329–2333 (2011).
[CrossRef] [PubMed]

P. Ginzburg, A. Hayat, N. Berkovitch, and M. Orenstein, “Nonlocal ponderomotive nonlinearity in plasmonics,” Opt. Lett.35(10), 1551–1553 (2010).
[CrossRef] [PubMed]

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett.10(4), 1405–1408 (2010).
[CrossRef] [PubMed]

E. Feigenbaum and M. Orenstein, “Ultrasmall volume plasmons, yet with complete retardation effects,” Phys. Rev. Lett.101(16), 163902 (2008).
[CrossRef] [PubMed]

Ou, J. Y.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Overgaag, K.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pelton, M.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009).
[CrossRef] [PubMed]

Plum, E.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

Poddubny, A. N.

A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84(2), 023807 (2011).
[CrossRef]

Podolskiy, V. A.

J. K. Kitur, V. A. Podolskiy, and M. A. Noginov, “Stimulated emission of surface plasmon polaritons in a microcylinder cavity,” Phys. Rev. Lett.106(18), 183903 (2011).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Prodan, E.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano4(9), 5269–5276 (2010).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

Rimini, A.

L. Fonda, G. C. Ghirardi, and A. Rimini, “Decay theory of unstable quantum systems,” Rep. Prog. Phys.41(4), 587–631 (1978).
[CrossRef]

Rivera, T.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry‐Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449–451 (1996).
[CrossRef]

Scully, M. O.

C. Benkert, M. O. Scully, and G. Süssmann, “Memory correlation effects on quantum noise in lasers and masers,” Phys. Rev. A41(11), 6119–6128 (1990).
[CrossRef] [PubMed]

Seke, J.

J. Seke and W. N. Herfort, “Deviations from exponential decay in the case of spontaneous emission from a two-level atom,” Phys. Rev. A38(2), 833–840 (1988).
[CrossRef] [PubMed]

Shalaev, V. M.

Z. Jacob, J. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

A. V. Kildishev, W. Cai, U. K. Chettiar, and V. M. Shalaev, “Transformation optics: approaching broadband electromagnetic cloaking,” New J. Phys.10(11), 115029 (2008).
[CrossRef]

Shor, I.

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles,” Nano Lett.11(6), 2329–2333 (2011).
[CrossRef] [PubMed]

Simic, A.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Sipe, J. E.

N. A. R. Bhat and J. E. Sipe, “Hamiltonian treatment of the electromagnetic field in dispersive and absorptive structured media,” Phys. Rev. A73(6), 063808 (2006).
[CrossRef]

Slutsky, B.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Smalbrugge, B.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Smit, M. K.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, “Quantum fluctuations of the refractive index near the interface between a metal and a nonlinear dielectric,” Phys. Rev. Lett.94(5), 057403 (2005).
[CrossRef] [PubMed]

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett.83(12), 2429–2432 (1999).
[CrossRef]

Soref, R. A.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Stockman, M.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

Stockman, M. I.

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011).
[CrossRef] [PubMed]

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12(2), 024004 (2010).
[CrossRef]

Sun, G.

Süssmann, G.

C. Benkert, M. O. Scully, and G. Süssmann, “Memory correlation effects on quantum noise in lasers and masers,” Phys. Rev. A41(11), 6119–6128 (1990).
[CrossRef] [PubMed]

Tanaka, K.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

Thierry-Mieg, V.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry‐Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449–451 (1996).
[CrossRef]

Tian, J.

C. Cao, J. Tian, and H. Cao, “Non-Markovian correlation function and direct analysis of spontaneous emission of an excited two-level atom,” Phys. Lett. A303(5-6), 318–327 (2002).
[CrossRef]

Turkiewicz, J. P.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Uchino, T.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

van Otten, F. W. M.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

van Veldhoven, P. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Vanmaekelbergh, D.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Vos, W. L.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

West, J.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005).
[CrossRef] [PubMed]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photonics Rev.2(3), 125–135 (2008).
[CrossRef]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photonics Rev.2(3), 125–135 (2008).
[CrossRef]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, Z.

I. D. Mayergoyz, Z. Zhang, and G. Miano, “Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles,” Phys. Rev. Lett.98(14), 147401 (2007).
[CrossRef] [PubMed]

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005).
[CrossRef]

Zheludev, N. I.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

Zhu, Y.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Zuloaga, J.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano4(9), 5269–5276 (2010).
[CrossRef] [PubMed]

ACS Nano

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano4(9), 5269–5276 (2010).
[CrossRef] [PubMed]

Appl. Phys. B

Z. Jacob, J. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Appl. Phys. Lett.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry‐Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449–451 (1996).
[CrossRef]

J. Opt.

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12(2), 024004 (2010).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. A

R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A3(3), 233–245 (1970).
[CrossRef]

J. Phys. Chem. C

B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C111(31), 11516–11527 (2007).
[CrossRef]

Laser Photonics Rev.

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photonics Rev.2(3), 125–135 (2008).
[CrossRef]

Nano Lett.

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett.10(4), 1405–1408 (2010).
[CrossRef] [PubMed]

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles,” Nano Lett.11(6), 2329–2333 (2011).
[CrossRef] [PubMed]

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett.9(1), 399–404 (2009).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005).
[CrossRef] [PubMed]

Nat. Mater.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Nat. Photonics

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Nature

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

New J. Phys.

A. V. Kildishev, W. Cai, U. K. Chettiar, and V. M. Shalaev, “Transformation optics: approaching broadband electromagnetic cloaking,” New J. Phys.10(11), 115029 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

C. Cao, J. Tian, and H. Cao, “Non-Markovian correlation function and direct analysis of spontaneous emission of an excited two-level atom,” Phys. Lett. A303(5-6), 318–327 (2002).
[CrossRef]

Phys. Rev.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Phys. Rev. A

A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84(2), 023807 (2011).
[CrossRef]

J. Seke and W. N. Herfort, “Deviations from exponential decay in the case of spontaneous emission from a two-level atom,” Phys. Rev. A38(2), 833–840 (1988).
[CrossRef] [PubMed]

N. A. R. Bhat and J. E. Sipe, “Hamiltonian treatment of the electromagnetic field in dispersive and absorptive structured media,” Phys. Rev. A73(6), 063808 (2006).
[CrossRef]

C. Benkert, M. O. Scully, and G. Süssmann, “Memory correlation effects on quantum noise in lasers and masers,” Phys. Rev. A41(11), 6119–6128 (1990).
[CrossRef] [PubMed]

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005).
[CrossRef]

A. Alù and N. Engheta, “Guided propagation along quadrupolar chains of plasmonic nanoparticles,” Phys. Rev. B79(23), 235412 (2009).
[CrossRef]

L. A. Blanco and F. J. García de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B69(20), 205414 (2004).
[CrossRef]

Phys. Rev. Lett.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett.102(23), 233901 (2009).
[CrossRef] [PubMed]

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009).
[CrossRef] [PubMed]

J. K. Kitur, V. A. Podolskiy, and M. A. Noginov, “Stimulated emission of surface plasmon polaritons in a microcylinder cavity,” Phys. Rev. Lett.106(18), 183903 (2011).
[CrossRef] [PubMed]

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett.83(12), 2429–2432 (1999).
[CrossRef]

I. D. Mayergoyz, Z. Zhang, and G. Miano, “Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles,” Phys. Rev. Lett.98(14), 147401 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, “Quantum fluctuations of the refractive index near the interface between a metal and a nonlinear dielectric,” Phys. Rev. Lett.94(5), 057403 (2005).
[CrossRef] [PubMed]

E. Feigenbaum and M. Orenstein, “Ultrasmall volume plasmons, yet with complete retardation effects,” Phys. Rev. Lett.101(16), 163902 (2008).
[CrossRef] [PubMed]

Rep. Prog. Phys.

L. Fonda, G. C. Ghirardi, and A. Rimini, “Decay theory of unstable quantum systems,” Rep. Prog. Phys.41(4), 587–631 (1978).
[CrossRef]

Science

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Other

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999), 3rd ed.

S. A. Maier, Plasmonics: Fundamentals and Applications, New York, Springer, 2007.

Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” e-print arXiv:0910.3981.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics