Abstract

We report on the formation and the optical properties of the planar and ridge optical waveguides in rutile TiO2 crystal by He+ ion implantation combined with micro-fabrication technologies. Planar optical waveguides in TiO2 are fabricated by high-energy (2.8 MeV) He+-ion implantation with a dose of 3 × 1016 ions/cm2 and triple low energies (450, 500, 550) keV He+-ion implantation with all fluences of 2 × 1016 ions/cm2 at room temperature. The guided modes were measured by a modal 2010 prism coupler at wavelength of 1539 nm. There are damage profiles in ion-implanted waveguides by Rutherford backscattering (RBS)/channeling measurements. The refractive-index profile of the 2.8 MeV He+-implanted waveguide was analyzed based on RCM (Reflected Calculation Method). Also ridge waveguides were fabricated by femtosecond laser ablation on 2.8 MeV ion implanted planar waveguide and Ar ion beam etching on the basis of triple keV ion implanted planar waveguide, separately. The loss of the ridge waveguide was estimated. The measured near-field intensity distributions of the planar and ridge modes are all shown.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Sauvage, F. Di Fonzo, A. Li Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati, C. E. Bottani, P. Comte, and M. Graetzel, “Hierarchical TiO2 photoanode for dye-sensitized solar cells,” Nano Lett. 10(7), 2562–2567 (2010).
    [CrossRef] [PubMed]
  2. B. Peng, G. Jungmann, C. Jäger, D. Haarer, H. W. Schmidt, and M. Thelakkat, “Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells,” Coord. Chem. Rev. 248(13-14), 1479–1489 (2004).
    [CrossRef]
  3. Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, and X. Zhu, “Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand,” Adv. Mater. 20(5), 1044–1049 (2008).
    [CrossRef]
  4. A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63(12), 515–582 (2008).
    [CrossRef]
  5. Z. X. Chen, W. X. Wang, Y. Takao, T. Matsubara, and L. M. Ren, “Microstructure and shear fracture characteristics of porous anodic TiO2 layer before and after hot water treatment,” Appl. Surf. Sci. 257(16), 7254–7262 (2011).
    [CrossRef]
  6. T. C. Jennifer, D. B. B. Jonathan, B. D. Parag, B. B. Ian, C. E. Christopher, M. Eric, and L. Marko, “Integrated TiO2 resonators for visible photonics,” Opt. Lett. 37(4), 539–541 (2011).
  7. J. D. B. Bradley, C. C. Evans, F. Parsy, K. C. Phillips, R. Senaratne, E. Marti, and E. Mazur, “Low-loss TiO2 planar waveguides for nanophotonic applications,” in Proceeding of IEEE Photonics Society Annual Meeting (IEEE, 2010), pp. 313–314.
  8. M. Foster, K. Moll, and A. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12(13), 2880–2887 (2004).
    [CrossRef] [PubMed]
  9. R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006).
    [CrossRef] [PubMed]
  10. H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
    [CrossRef]
  11. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
    [CrossRef]
  12. M. M. Haruna, Y. Murata, and H. Nishihara, “Laser-beam direct writing of TiO2 channels for fabrication of Ti:LiNbO3 waveguides,” Jpn. J. Appl. Phys. 31(Part 1, No. 5B), 1593–1596 (1992).
    [CrossRef]
  13. K. S. Park, E. K. Seo, Y. R. Do, K. Kim, and M. M. Sung, “Light stamping lithography: microcontact printing without inks,” J. Am. Chem. Soc. 128(3), 858–865 (2006).
    [CrossRef] [PubMed]
  14. L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18(6), 2619–2645 (2000).
    [CrossRef]
  15. K. M. Yoon, K. Y. Yang, H. Lee, and H. S. Kim, “Formation of TiO2 nanopattern using reverse imprinting and sol-gel method,” J. Vac. Sci. Technol. B 27(6), 2810–2813 (2009).
    [CrossRef]
  16. B. Liu and S. T. Ho, “Sub-100 nm nanolithography and pattern transfer on compound semiconductor using sol-gel-derived TiO2 resist,” J. Electrochem. Soc. 155(5), P57–P60 (2008).
    [CrossRef]
  17. W. Wesch, T. Opfermann, F. Schrempel, and T. Höche, “Track formation in KTiOPO4 by MeV implantation of light ions,” Nucl. Instrum. Methods Phys. Res. B 175-177, 88–92 (2001).
    [CrossRef]
  18. W. Wesch and G. Götz, “Influence of ion implantation on the optical properties of silicon,” Radiat. Eff. 49(1-3), 137–140 (1980).
    [CrossRef]
  19. T. Steinbach, F. Schrempel, T. Gischkat, and W. Wesch, “Influence of ion energy and ion species on ion channeling in LiNbO3,” Phys. Rev. B 78(18), 184106 (2008).
    [CrossRef]
  20. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3-4), 165–182 (2008).
    [CrossRef]
  21. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
    [CrossRef]
  22. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, 1994).
  23. P. J. Chandler, L. Zhang, and P. D. Townsend, “Double waveguide in LiNbO3 by ion implantation,” Appl. Phys. Lett. 55(17), 1710–1712 (1989).
    [CrossRef]
  24. V. V. Atuchin, C. C. Ziling, I. Savatinova, M. N. Armenise, and V. M. N. Passaro, “Waveguide formation mechanism generated by double doping in ferroelectric crystals,” J. Appl. Phys. 78(12), 6936–6939 (1995).
    [CrossRef]
  25. V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Res. B 168(4), 498–502 (2000).
    [CrossRef]
  26. J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt. 15(1), 151–155 (1976).
    [CrossRef] [PubMed]
  27. X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
    [CrossRef]
  28. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
    [CrossRef]
  29. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101–081129 (2009).
    [CrossRef]
  30. D. S. Hines and K. E. Williams, “Patterning of wave guides in LiNbO3 using ion beam etching and reactive ion beam etching,” in The 10th Canadian Semiconductor Technology Conference (Ottawa, 2002), pp. 1072–1075.
  31. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [CrossRef]
  32. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
    [CrossRef]
  33. H. Hu, F. Lu, F. Chen, F. X. Wang, J. H. Zhang, X. D. Liu, K. M. Wang, and B. R. Shi, “Optical waveguide formation by MeV H+ implanted into LiNbO3 crystal,” Opt. Commun. 177(1-6), 189–193 (2000).
    [CrossRef]
  34. J. Ziegler, “Computer code SRIM version,” http://www.srim.org .
  35. R. D. Innocenti, S Reidt, A Guarino, D Rezzonico, G Poberaj, and P Gunter, “Micromachining of ridge optical waveguides on top of He+-implanted beta-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100(11), 113121 (2006).

2011 (2)

Z. X. Chen, W. X. Wang, Y. Takao, T. Matsubara, and L. M. Ren, “Microstructure and shear fracture characteristics of porous anodic TiO2 layer before and after hot water treatment,” Appl. Surf. Sci. 257(16), 7254–7262 (2011).
[CrossRef]

T. C. Jennifer, D. B. B. Jonathan, B. D. Parag, B. B. Ian, C. E. Christopher, M. Eric, and L. Marko, “Integrated TiO2 resonators for visible photonics,” Opt. Lett. 37(4), 539–541 (2011).

2010 (1)

F. Sauvage, F. Di Fonzo, A. Li Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati, C. E. Bottani, P. Comte, and M. Graetzel, “Hierarchical TiO2 photoanode for dye-sensitized solar cells,” Nano Lett. 10(7), 2562–2567 (2010).
[CrossRef] [PubMed]

2009 (4)

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[CrossRef]

K. M. Yoon, K. Y. Yang, H. Lee, and H. S. Kim, “Formation of TiO2 nanopattern using reverse imprinting and sol-gel method,” J. Vac. Sci. Technol. B 27(6), 2810–2813 (2009).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101–081129 (2009).
[CrossRef]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[CrossRef]

2008 (7)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, and X. Zhu, “Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand,” Adv. Mater. 20(5), 1044–1049 (2008).
[CrossRef]

A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63(12), 515–582 (2008).
[CrossRef]

B. Liu and S. T. Ho, “Sub-100 nm nanolithography and pattern transfer on compound semiconductor using sol-gel-derived TiO2 resist,” J. Electrochem. Soc. 155(5), P57–P60 (2008).
[CrossRef]

T. Steinbach, F. Schrempel, T. Gischkat, and W. Wesch, “Influence of ion energy and ion species on ion channeling in LiNbO3,” Phys. Rev. B 78(18), 184106 (2008).
[CrossRef]

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3-4), 165–182 (2008).
[CrossRef]

2007 (1)

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

2006 (3)

K. S. Park, E. K. Seo, Y. R. Do, K. Kim, and M. M. Sung, “Light stamping lithography: microcontact printing without inks,” J. Am. Chem. Soc. 128(3), 858–865 (2006).
[CrossRef] [PubMed]

R. D. Innocenti, S Reidt, A Guarino, D Rezzonico, G Poberaj, and P Gunter, “Micromachining of ridge optical waveguides on top of He+-implanted beta-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100(11), 113121 (2006).

R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006).
[CrossRef] [PubMed]

2004 (2)

M. Foster, K. Moll, and A. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12(13), 2880–2887 (2004).
[CrossRef] [PubMed]

B. Peng, G. Jungmann, C. Jäger, D. Haarer, H. W. Schmidt, and M. Thelakkat, “Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells,” Coord. Chem. Rev. 248(13-14), 1479–1489 (2004).
[CrossRef]

2001 (1)

W. Wesch, T. Opfermann, F. Schrempel, and T. Höche, “Track formation in KTiOPO4 by MeV implantation of light ions,” Nucl. Instrum. Methods Phys. Res. B 175-177, 88–92 (2001).
[CrossRef]

2000 (3)

L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18(6), 2619–2645 (2000).
[CrossRef]

V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Res. B 168(4), 498–502 (2000).
[CrossRef]

H. Hu, F. Lu, F. Chen, F. X. Wang, J. H. Zhang, X. D. Liu, K. M. Wang, and B. R. Shi, “Optical waveguide formation by MeV H+ implanted into LiNbO3 crystal,” Opt. Commun. 177(1-6), 189–193 (2000).
[CrossRef]

1998 (1)

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[CrossRef]

1995 (1)

V. V. Atuchin, C. C. Ziling, I. Savatinova, M. N. Armenise, and V. M. N. Passaro, “Waveguide formation mechanism generated by double doping in ferroelectric crystals,” J. Appl. Phys. 78(12), 6936–6939 (1995).
[CrossRef]

1992 (1)

M. M. Haruna, Y. Murata, and H. Nishihara, “Laser-beam direct writing of TiO2 channels for fabrication of Ti:LiNbO3 waveguides,” Jpn. J. Appl. Phys. 31(Part 1, No. 5B), 1593–1596 (1992).
[CrossRef]

1989 (1)

P. J. Chandler, L. Zhang, and P. D. Townsend, “Double waveguide in LiNbO3 by ion implantation,” Appl. Phys. Lett. 55(17), 1710–1712 (1989).
[CrossRef]

1986 (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[CrossRef]

1980 (1)

W. Wesch and G. Götz, “Influence of ion implantation on the optical properties of silicon,” Radiat. Eff. 49(1-3), 137–140 (1980).
[CrossRef]

1976 (1)

Ams, M.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[CrossRef]

Armenise, M. N.

V. V. Atuchin, C. C. Ziling, I. Savatinova, M. N. Armenise, and V. M. N. Passaro, “Waveguide formation mechanism generated by double doping in ferroelectric crystals,” J. Appl. Phys. 78(12), 6936–6939 (1995).
[CrossRef]

Atuchin, V. V.

V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Res. B 168(4), 498–502 (2000).
[CrossRef]

V. V. Atuchin, C. C. Ziling, I. Savatinova, M. N. Armenise, and V. M. N. Passaro, “Waveguide formation mechanism generated by double doping in ferroelectric crystals,” J. Appl. Phys. 78(12), 6936–6939 (1995).
[CrossRef]

Bai, J.

Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, and X. Zhu, “Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand,” Adv. Mater. 20(5), 1044–1049 (2008).
[CrossRef]

Bottani, C. E.

F. Sauvage, F. Di Fonzo, A. Li Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati, C. E. Bottani, P. Comte, and M. Graetzel, “Hierarchical TiO2 photoanode for dye-sensitized solar cells,” Nano Lett. 10(7), 2562–2567 (2010).
[CrossRef] [PubMed]

Cai, W.

Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, and X. Zhu, “Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand,” Adv. Mater. 20(5), 1044–1049 (2008).
[CrossRef]

Casari, C. S.

F. Sauvage, F. Di Fonzo, A. Li Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati, C. E. Bottani, P. Comte, and M. Graetzel, “Hierarchical TiO2 photoanode for dye-sensitized solar cells,” Nano Lett. 10(7), 2562–2567 (2010).
[CrossRef] [PubMed]

Chandler, P. J.

P. J. Chandler, L. Zhang, and P. D. Townsend, “Double waveguide in LiNbO3 by ion implantation,” Appl. Phys. Lett. 55(17), 1710–1712 (1989).
[CrossRef]

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[CrossRef]

Chen, A.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[CrossRef]

Chen, F.

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101–081129 (2009).
[CrossRef]

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3-4), 165–182 (2008).
[CrossRef]

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

H. Hu, F. Lu, F. Chen, F. X. Wang, J. H. Zhang, X. D. Liu, K. M. Wang, and B. R. Shi, “Optical waveguide formation by MeV H+ implanted into LiNbO3 crystal,” Opt. Commun. 177(1-6), 189–193 (2000).
[CrossRef]

Chen, Z. X.

Z. X. Chen, W. X. Wang, Y. Takao, T. Matsubara, and L. M. Ren, “Microstructure and shear fracture characteristics of porous anodic TiO2 layer before and after hot water treatment,” Appl. Surf. Sci. 257(16), 7254–7262 (2011).
[CrossRef]

Christopher, C. E.

Comte, P.

F. Sauvage, F. Di Fonzo, A. Li Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati, C. E. Bottani, P. Comte, and M. Graetzel, “Hierarchical TiO2 photoanode for dye-sensitized solar cells,” Nano Lett. 10(7), 2562–2567 (2010).
[CrossRef] [PubMed]

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[CrossRef]

Di Fonzo, F.

F. Sauvage, F. Di Fonzo, A. Li Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati, C. E. Bottani, P. Comte, and M. Graetzel, “Hierarchical TiO2 photoanode for dye-sensitized solar cells,” Nano Lett. 10(7), 2562–2567 (2010).
[CrossRef] [PubMed]

Divitini, G.

F. Sauvage, F. Di Fonzo, A. Li Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati, C. E. Bottani, P. Comte, and M. Graetzel, “Hierarchical TiO2 photoanode for dye-sensitized solar cells,” Nano Lett. 10(7), 2562–2567 (2010).
[CrossRef] [PubMed]

Do, Y. R.

K. S. Park, E. K. Seo, Y. R. Do, K. Kim, and M. M. Sung, “Light stamping lithography: microcontact printing without inks,” J. Am. Chem. Soc. 128(3), 858–865 (2006).
[CrossRef] [PubMed]

Ducati, C.

F. Sauvage, F. Di Fonzo, A. Li Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati, C. E. Bottani, P. Comte, and M. Graetzel, “Hierarchical TiO2 photoanode for dye-sensitized solar cells,” Nano Lett. 10(7), 2562–2567 (2010).
[CrossRef] [PubMed]

Eric, M.

Foster, M.

Fujishima, A.

A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63(12), 515–582 (2008).
[CrossRef]

Gaeta, A.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006).
[CrossRef] [PubMed]

Gischkat, T.

T. Steinbach, F. Schrempel, T. Gischkat, and W. Wesch, “Influence of ion energy and ion species on ion channeling in LiNbO3,” Phys. Rev. B 78(18), 184106 (2008).
[CrossRef]

Götz, G.

W. Wesch and G. Götz, “Influence of ion implantation on the optical properties of silicon,” Radiat. Eff. 49(1-3), 137–140 (1980).
[CrossRef]

Graetzel, M.

F. Sauvage, F. Di Fonzo, A. Li Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati, C. E. Bottani, P. Comte, and M. Graetzel, “Hierarchical TiO2 photoanode for dye-sensitized solar cells,” Nano Lett. 10(7), 2562–2567 (2010).
[CrossRef] [PubMed]

Guarino, A

R. D. Innocenti, S Reidt, A Guarino, D Rezzonico, G Poberaj, and P Gunter, “Micromachining of ridge optical waveguides on top of He+-implanted beta-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100(11), 113121 (2006).

Gunter, P

R. D. Innocenti, S Reidt, A Guarino, D Rezzonico, G Poberaj, and P Gunter, “Micromachining of ridge optical waveguides on top of He+-implanted beta-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100(11), 113121 (2006).

Haarer, D.

B. Peng, G. Jungmann, C. Jäger, D. Haarer, H. W. Schmidt, and M. Thelakkat, “Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells,” Coord. Chem. Rev. 248(13-14), 1479–1489 (2004).
[CrossRef]

Haruna, M. M.

M. M. Haruna, Y. Murata, and H. Nishihara, “Laser-beam direct writing of TiO2 channels for fabrication of Ti:LiNbO3 waveguides,” Jpn. J. Appl. Phys. 31(Part 1, No. 5B), 1593–1596 (1992).
[CrossRef]

Heidrich, P. F.

Ho, S. T.

B. Liu and S. T. Ho, “Sub-100 nm nanolithography and pattern transfer on compound semiconductor using sol-gel-derived TiO2 resist,” J. Electrochem. Soc. 155(5), P57–P60 (2008).
[CrossRef]

Höche, T.

W. Wesch, T. Opfermann, F. Schrempel, and T. Höche, “Track formation in KTiOPO4 by MeV implantation of light ions,” Nucl. Instrum. Methods Phys. Res. B 175-177, 88–92 (2001).
[CrossRef]

Hu, H.

H. Hu, F. Lu, F. Chen, F. X. Wang, J. H. Zhang, X. D. Liu, K. M. Wang, and B. R. Shi, “Optical waveguide formation by MeV H+ implanted into LiNbO3 crystal,” Opt. Commun. 177(1-6), 189–193 (2000).
[CrossRef]

Ian, B. B.

Innocenti, R. D.

R. D. Innocenti, S Reidt, A Guarino, D Rezzonico, G Poberaj, and P Gunter, “Micromachining of ridge optical waveguides on top of He+-implanted beta-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100(11), 113121 (2006).

Jäger, C.

B. Peng, G. Jungmann, C. Jäger, D. Haarer, H. W. Schmidt, and M. Thelakkat, “Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells,” Coord. Chem. Rev. 248(13-14), 1479–1489 (2004).
[CrossRef]

Jennifer, T. C.

Jin, Z.

Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, and X. Zhu, “Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand,” Adv. Mater. 20(5), 1044–1049 (2008).
[CrossRef]

Jonathan, D. B. B.

Jungmann, G.

B. Peng, G. Jungmann, C. Jäger, D. Haarer, H. W. Schmidt, and M. Thelakkat, “Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells,” Coord. Chem. Rev. 248(13-14), 1479–1489 (2004).
[CrossRef]

Kim, H. S.

K. M. Yoon, K. Y. Yang, H. Lee, and H. S. Kim, “Formation of TiO2 nanopattern using reverse imprinting and sol-gel method,” J. Vac. Sci. Technol. B 27(6), 2810–2813 (2009).
[CrossRef]

Kim, K.

K. S. Park, E. K. Seo, Y. R. Do, K. Kim, and M. M. Sung, “Light stamping lithography: microcontact printing without inks,” J. Am. Chem. Soc. 128(3), 858–865 (2006).
[CrossRef] [PubMed]

Kip, D.

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[CrossRef]

Lama, F. L.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[CrossRef]

Lee, H.

K. M. Yoon, K. Y. Yang, H. Lee, and H. S. Kim, “Formation of TiO2 nanopattern using reverse imprinting and sol-gel method,” J. Vac. Sci. Technol. B 27(6), 2810–2813 (2009).
[CrossRef]

Li, J.

Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, and X. Zhu, “Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand,” Adv. Mater. 20(5), 1044–1049 (2008).
[CrossRef]

Li, L.

Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, and X. Zhu, “Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand,” Adv. Mater. 20(5), 1044–1049 (2008).
[CrossRef]

Li, Y.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[CrossRef]

Li Bassi, A.

F. Sauvage, F. Di Fonzo, A. Li Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati, C. E. Bottani, P. Comte, and M. Graetzel, “Hierarchical TiO2 photoanode for dye-sensitized solar cells,” Nano Lett. 10(7), 2562–2567 (2010).
[CrossRef] [PubMed]

Liu, B.

B. Liu and S. T. Ho, “Sub-100 nm nanolithography and pattern transfer on compound semiconductor using sol-gel-derived TiO2 resist,” J. Electrochem. Soc. 155(5), P57–P60 (2008).
[CrossRef]

Liu, H.

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

Liu, X.

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

Liu, X. D.

H. Hu, F. Lu, F. Chen, F. X. Wang, J. H. Zhang, X. D. Liu, K. M. Wang, and B. R. Shi, “Optical waveguide formation by MeV H+ implanted into LiNbO3 crystal,” Opt. Commun. 177(1-6), 189–193 (2000).
[CrossRef]

Liu, Y.

Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, and X. Zhu, “Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand,” Adv. Mater. 20(5), 1044–1049 (2008).
[CrossRef]

Long, H.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[CrossRef]

Lu, F.

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

H. Hu, F. Lu, F. Chen, F. X. Wang, J. H. Zhang, X. D. Liu, K. M. Wang, and B. R. Shi, “Optical waveguide formation by MeV H+ implanted into LiNbO3 crystal,” Opt. Commun. 177(1-6), 189–193 (2000).
[CrossRef]

Lu, P.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[CrossRef]

Marko, L.

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[CrossRef]

Martinu, L.

L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18(6), 2619–2645 (2000).
[CrossRef]

Matsubara, T.

Z. X. Chen, W. X. Wang, Y. Takao, T. Matsubara, and L. M. Ren, “Microstructure and shear fracture characteristics of porous anodic TiO2 layer before and after hot water treatment,” Appl. Surf. Sci. 257(16), 7254–7262 (2011).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006).
[CrossRef] [PubMed]

Moll, K.

Murata, Y.

M. M. Haruna, Y. Murata, and H. Nishihara, “Laser-beam direct writing of TiO2 channels for fabrication of Ti:LiNbO3 waveguides,” Jpn. J. Appl. Phys. 31(Part 1, No. 5B), 1593–1596 (1992).
[CrossRef]

Nishihara, H.

M. M. Haruna, Y. Murata, and H. Nishihara, “Laser-beam direct writing of TiO2 channels for fabrication of Ti:LiNbO3 waveguides,” Jpn. J. Appl. Phys. 31(Part 1, No. 5B), 1593–1596 (1992).
[CrossRef]

Opfermann, T.

W. Wesch, T. Opfermann, F. Schrempel, and T. Höche, “Track formation in KTiOPO4 by MeV implantation of light ions,” Nucl. Instrum. Methods Phys. Res. B 175-177, 88–92 (2001).
[CrossRef]

Parag, B. D.

Park, K. S.

K. S. Park, E. K. Seo, Y. R. Do, K. Kim, and M. M. Sung, “Light stamping lithography: microcontact printing without inks,” J. Am. Chem. Soc. 128(3), 858–865 (2006).
[CrossRef] [PubMed]

Passaro, V. M. N.

V. V. Atuchin, C. C. Ziling, I. Savatinova, M. N. Armenise, and V. M. N. Passaro, “Waveguide formation mechanism generated by double doping in ferroelectric crystals,” J. Appl. Phys. 78(12), 6936–6939 (1995).
[CrossRef]

Peng, B.

B. Peng, G. Jungmann, C. Jäger, D. Haarer, H. W. Schmidt, and M. Thelakkat, “Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells,” Coord. Chem. Rev. 248(13-14), 1479–1489 (2004).
[CrossRef]

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[CrossRef]

Poberaj, G

R. D. Innocenti, S Reidt, A Guarino, D Rezzonico, G Poberaj, and P Gunter, “Micromachining of ridge optical waveguides on top of He+-implanted beta-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100(11), 113121 (2006).

Poitras, D.

L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18(6), 2619–2645 (2000).
[CrossRef]

Reidt, S

R. D. Innocenti, S Reidt, A Guarino, D Rezzonico, G Poberaj, and P Gunter, “Micromachining of ridge optical waveguides on top of He+-implanted beta-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100(11), 113121 (2006).

Ren, L. M.

Z. X. Chen, W. X. Wang, Y. Takao, T. Matsubara, and L. M. Ren, “Microstructure and shear fracture characteristics of porous anodic TiO2 layer before and after hot water treatment,” Appl. Surf. Sci. 257(16), 7254–7262 (2011).
[CrossRef]

Rezzonico, D

R. D. Innocenti, S Reidt, A Guarino, D Rezzonico, G Poberaj, and P Gunter, “Micromachining of ridge optical waveguides on top of He+-implanted beta-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100(11), 113121 (2006).

Russo, V.

F. Sauvage, F. Di Fonzo, A. Li Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati, C. E. Bottani, P. Comte, and M. Graetzel, “Hierarchical TiO2 photoanode for dye-sensitized solar cells,” Nano Lett. 10(7), 2562–2567 (2010).
[CrossRef] [PubMed]

Sauvage, F.

F. Sauvage, F. Di Fonzo, A. Li Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati, C. E. Bottani, P. Comte, and M. Graetzel, “Hierarchical TiO2 photoanode for dye-sensitized solar cells,” Nano Lett. 10(7), 2562–2567 (2010).
[CrossRef] [PubMed]

Savatinova, I.

V. V. Atuchin, C. C. Ziling, I. Savatinova, M. N. Armenise, and V. M. N. Passaro, “Waveguide formation mechanism generated by double doping in ferroelectric crystals,” J. Appl. Phys. 78(12), 6936–6939 (1995).
[CrossRef]

Schmidt, H. W.

B. Peng, G. Jungmann, C. Jäger, D. Haarer, H. W. Schmidt, and M. Thelakkat, “Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells,” Coord. Chem. Rev. 248(13-14), 1479–1489 (2004).
[CrossRef]

Schrempel, F.

T. Steinbach, F. Schrempel, T. Gischkat, and W. Wesch, “Influence of ion energy and ion species on ion channeling in LiNbO3,” Phys. Rev. B 78(18), 184106 (2008).
[CrossRef]

W. Wesch, T. Opfermann, F. Schrempel, and T. Höche, “Track formation in KTiOPO4 by MeV implantation of light ions,” Nucl. Instrum. Methods Phys. Res. B 175-177, 88–92 (2001).
[CrossRef]

Seo, E. K.

K. S. Park, E. K. Seo, Y. R. Do, K. Kim, and M. M. Sung, “Light stamping lithography: microcontact printing without inks,” J. Am. Chem. Soc. 128(3), 858–865 (2006).
[CrossRef] [PubMed]

Shi, B. R.

H. Hu, F. Lu, F. Chen, F. X. Wang, J. H. Zhang, X. D. Liu, K. M. Wang, and B. R. Shi, “Optical waveguide formation by MeV H+ implanted into LiNbO3 crystal,” Opt. Commun. 177(1-6), 189–193 (2000).
[CrossRef]

Steinbach, T.

T. Steinbach, F. Schrempel, T. Gischkat, and W. Wesch, “Influence of ion energy and ion species on ion channeling in LiNbO3,” Phys. Rev. B 78(18), 184106 (2008).
[CrossRef]

Sung, M. M.

K. S. Park, E. K. Seo, Y. R. Do, K. Kim, and M. M. Sung, “Light stamping lithography: microcontact printing without inks,” J. Am. Chem. Soc. 128(3), 858–865 (2006).
[CrossRef] [PubMed]

Svacha, G. T.

Takao, Y.

Z. X. Chen, W. X. Wang, Y. Takao, T. Matsubara, and L. M. Ren, “Microstructure and shear fracture characteristics of porous anodic TiO2 layer before and after hot water treatment,” Appl. Surf. Sci. 257(16), 7254–7262 (2011).
[CrossRef]

Tan, Y.

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

Thelakkat, M.

B. Peng, G. Jungmann, C. Jäger, D. Haarer, H. W. Schmidt, and M. Thelakkat, “Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells,” Coord. Chem. Rev. 248(13-14), 1479–1489 (2004).
[CrossRef]

Tong, L.

Townsend, P. D.

P. J. Chandler, L. Zhang, and P. D. Townsend, “Double waveguide in LiNbO3 by ion implantation,” Appl. Phys. Lett. 55(17), 1710–1712 (1989).
[CrossRef]

Tryk, D. A.

A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63(12), 515–582 (2008).
[CrossRef]

Wang, F. X.

H. Hu, F. Lu, F. Chen, F. X. Wang, J. H. Zhang, X. D. Liu, K. M. Wang, and B. R. Shi, “Optical waveguide formation by MeV H+ implanted into LiNbO3 crystal,” Opt. Commun. 177(1-6), 189–193 (2000).
[CrossRef]

Wang, K. M.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

H. Hu, F. Lu, F. Chen, F. X. Wang, J. H. Zhang, X. D. Liu, K. M. Wang, and B. R. Shi, “Optical waveguide formation by MeV H+ implanted into LiNbO3 crystal,” Opt. Commun. 177(1-6), 189–193 (2000).
[CrossRef]

Wang, L.

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

Wang, W. X.

Z. X. Chen, W. X. Wang, Y. Takao, T. Matsubara, and L. M. Ren, “Microstructure and shear fracture characteristics of porous anodic TiO2 layer before and after hot water treatment,” Appl. Surf. Sci. 257(16), 7254–7262 (2011).
[CrossRef]

Wang, X. L.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

Wesch, W.

T. Steinbach, F. Schrempel, T. Gischkat, and W. Wesch, “Influence of ion energy and ion species on ion channeling in LiNbO3,” Phys. Rev. B 78(18), 184106 (2008).
[CrossRef]

W. Wesch, T. Opfermann, F. Schrempel, and T. Höche, “Track formation in KTiOPO4 by MeV implantation of light ions,” Nucl. Instrum. Methods Phys. Res. B 175-177, 88–92 (2001).
[CrossRef]

W. Wesch and G. Götz, “Influence of ion implantation on the optical properties of silicon,” Radiat. Eff. 49(1-3), 137–140 (1980).
[CrossRef]

White, J. M.

Withford, M. J.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[CrossRef]

Yang, G.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[CrossRef]

Yang, K. Y.

K. M. Yoon, K. Y. Yang, H. Lee, and H. S. Kim, “Formation of TiO2 nanopattern using reverse imprinting and sol-gel method,” J. Vac. Sci. Technol. B 27(6), 2810–2813 (2009).
[CrossRef]

Yoon, K. M.

K. M. Yoon, K. Y. Yang, H. Lee, and H. S. Kim, “Formation of TiO2 nanopattern using reverse imprinting and sol-gel method,” J. Vac. Sci. Technol. B 27(6), 2810–2813 (2009).
[CrossRef]

Zhang, J.

Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, and X. Zhu, “Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand,” Adv. Mater. 20(5), 1044–1049 (2008).
[CrossRef]

Zhang, J. H.

H. Hu, F. Lu, F. Chen, F. X. Wang, J. H. Zhang, X. D. Liu, K. M. Wang, and B. R. Shi, “Optical waveguide formation by MeV H+ implanted into LiNbO3 crystal,” Opt. Commun. 177(1-6), 189–193 (2000).
[CrossRef]

Zhang, L.

P. J. Chandler, L. Zhang, and P. D. Townsend, “Double waveguide in LiNbO3 by ion implantation,” Appl. Phys. Lett. 55(17), 1710–1712 (1989).
[CrossRef]

Zhang, R.

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

Zhang, X.

A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63(12), 515–582 (2008).
[CrossRef]

Zheng, Q.

Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, and X. Zhu, “Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand,” Adv. Mater. 20(5), 1044–1049 (2008).
[CrossRef]

Zhou, B.

Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, and X. Zhu, “Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand,” Adv. Mater. 20(5), 1044–1049 (2008).
[CrossRef]

Zhu, X.

Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, and X. Zhu, “Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand,” Adv. Mater. 20(5), 1044–1049 (2008).
[CrossRef]

Ziling, C. C.

V. V. Atuchin, C. C. Ziling, I. Savatinova, M. N. Armenise, and V. M. N. Passaro, “Waveguide formation mechanism generated by double doping in ferroelectric crystals,” J. Appl. Phys. 78(12), 6936–6939 (1995).
[CrossRef]

Adv. Mater. (1)

Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, and X. Zhu, “Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand,” Adv. Mater. 20(5), 1044–1049 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

P. J. Chandler, L. Zhang, and P. D. Townsend, “Double waveguide in LiNbO3 by ion implantation,” Appl. Phys. Lett. 55(17), 1710–1712 (1989).
[CrossRef]

Appl. Surf. Sci. (1)

Z. X. Chen, W. X. Wang, Y. Takao, T. Matsubara, and L. M. Ren, “Microstructure and shear fracture characteristics of porous anodic TiO2 layer before and after hot water treatment,” Appl. Surf. Sci. 257(16), 7254–7262 (2011).
[CrossRef]

Coord. Chem. Rev. (1)

B. Peng, G. Jungmann, C. Jäger, D. Haarer, H. W. Schmidt, and M. Thelakkat, “Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells,” Coord. Chem. Rev. 248(13-14), 1479–1489 (2004).
[CrossRef]

Crit. Rev. Solid State Mater. Sci. (1)

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3-4), 165–182 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

K. S. Park, E. K. Seo, Y. R. Do, K. Kim, and M. M. Sung, “Light stamping lithography: microcontact printing without inks,” J. Am. Chem. Soc. 128(3), 858–865 (2006).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101–081129 (2009).
[CrossRef]

V. V. Atuchin, C. C. Ziling, I. Savatinova, M. N. Armenise, and V. M. N. Passaro, “Waveguide formation mechanism generated by double doping in ferroelectric crystals,” J. Appl. Phys. 78(12), 6936–6939 (1995).
[CrossRef]

R. D. Innocenti, S Reidt, A Guarino, D Rezzonico, G Poberaj, and P Gunter, “Micromachining of ridge optical waveguides on top of He+-implanted beta-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100(11), 113121 (2006).

J. Electrochem. Soc. (1)

B. Liu and S. T. Ho, “Sub-100 nm nanolithography and pattern transfer on compound semiconductor using sol-gel-derived TiO2 resist,” J. Electrochem. Soc. 155(5), P57–P60 (2008).
[CrossRef]

J. Vac. Sci. Technol. A (1)

L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18(6), 2619–2645 (2000).
[CrossRef]

J. Vac. Sci. Technol. B (1)

K. M. Yoon, K. Y. Yang, H. Lee, and H. S. Kim, “Formation of TiO2 nanopattern using reverse imprinting and sol-gel method,” J. Vac. Sci. Technol. B 27(6), 2810–2813 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. M. Haruna, Y. Murata, and H. Nishihara, “Laser-beam direct writing of TiO2 channels for fabrication of Ti:LiNbO3 waveguides,” Jpn. J. Appl. Phys. 31(Part 1, No. 5B), 1593–1596 (1992).
[CrossRef]

Laser Photonics Rev. (1)

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[CrossRef]

Nano Lett. (1)

F. Sauvage, F. Di Fonzo, A. Li Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati, C. E. Bottani, P. Comte, and M. Graetzel, “Hierarchical TiO2 photoanode for dye-sensitized solar cells,” Nano Lett. 10(7), 2562–2567 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (2)

W. Wesch, T. Opfermann, F. Schrempel, and T. Höche, “Track formation in KTiOPO4 by MeV implantation of light ions,” Nucl. Instrum. Methods Phys. Res. B 175-177, 88–92 (2001).
[CrossRef]

V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Res. B 168(4), 498–502 (2000).
[CrossRef]

Opt. Acta (Lond.) (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[CrossRef]

Opt. Commun. (2)

H. Hu, F. Lu, F. Chen, F. X. Wang, J. H. Zhang, X. D. Liu, K. M. Wang, and B. R. Shi, “Optical waveguide formation by MeV H+ implanted into LiNbO3 crystal,” Opt. Commun. 177(1-6), 189–193 (2000).
[CrossRef]

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

Phys. Rev. B (1)

T. Steinbach, F. Schrempel, T. Gischkat, and W. Wesch, “Influence of ion energy and ion species on ion channeling in LiNbO3,” Phys. Rev. B 78(18), 184106 (2008).
[CrossRef]

Radiat. Eff. (1)

W. Wesch and G. Götz, “Influence of ion implantation on the optical properties of silicon,” Radiat. Eff. 49(1-3), 137–140 (1980).
[CrossRef]

Surf. Sci. Rep. (1)

A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63(12), 515–582 (2008).
[CrossRef]

Thin Solid Films (1)

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[CrossRef]

Other (4)

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, 1994).

D. S. Hines and K. E. Williams, “Patterning of wave guides in LiNbO3 using ion beam etching and reactive ion beam etching,” in The 10th Canadian Semiconductor Technology Conference (Ottawa, 2002), pp. 1072–1075.

J. Ziegler, “Computer code SRIM version,” http://www.srim.org .

J. D. B. Bradley, C. C. Evans, F. Parsy, K. C. Phillips, R. Senaratne, E. Marti, and E. Mazur, “Low-loss TiO2 planar waveguides for nanophotonic applications,” in Proceeding of IEEE Photonics Society Annual Meeting (IEEE, 2010), pp. 313–314.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

RBS/channeling spectra for ion implanted rutile waveguide by 2.8 MeV He ion at a dose of 3 × 1016 ions/cm2 (before and after annealing). The virgin and random spectra of rutile crystal are all shown, for comparison.

Fig. 2
Fig. 2

Measured relative intensity of the TM polarized light reflected from the prism versus the effective refractive index of the waveguide by 2.8 MeV He ion implantation at a fluence of 3 × 1016 ions/cm2 (a) before and (b) after annealing at 1539nm, respectively.

Fig. 3
Fig. 3

(solid blue line) Extraordinary refractive index ne profile of a rutile waveguide formed by 2.8 MeV He+ ion implantation with a fluence of 3 × 1016 ions/cm2 at room temperature. For comparison, the nuclear energy loss as a function of the penetration depth (vacancy distribution) in the rutile crystal is also represented (dot red line).

Fig. 4
Fig. 4

(a) Microscope image of the waveguide formed by 2.8 MeV He+ ion implantation. (b) Near-field intensity distribution of TM modes measured at the output facet of the rutile (TM0). The light at wavelength of λ = 632.8 nm is used.

Fig. 5
Fig. 5

(a) Microscope photograph of the cross section of the triple keV He implanted rutile waveguide. (b) Near-field intensity distribution of the light directly coupled out from the output facet of the waveguide.

Fig. 6
Fig. 6

Microscope photographs of the (a) top view and (b) cross section of the ridge waveguide formed on 2.8 MeV He implanted rutile waveguide. Measured 3D near-field intensity distributions TM00 (c), TM10 (d) and TM20 (e) from the ridge waveguide.

Metrics