Abstract

Metamaterials attain their behavior due to resonant interactions among their subwavelength components and thus show specific designer features only in a very narrow frequency band. There is no simple way to dynamically increase the operating bandwidth of a narrowband metamaterial, but it may be possible to change its central frequency, shifting the spectral response to a new frequency range. In this paper, we propose and experimentally demonstrate a metamaterial absorber that can shift its central operating frequency by using mechanical means. The shift is achieved by varying the gap between the metamaterial and an auxiliary dielectric slab parallel to its surface. We also show that it is possible to create multiple absorption peaks by adjusting the size and/or shape of the dielectric slab, and to shift them by moving the slab relative to the metamaterial. Specifically, using numerical simulations we design a microwave metamaterial absorber and experimentally demonstrate that its central frequency can be set anywhere in a 1.6 GHz frequency range. The proposed configuration is simple and easy to make, and may be readily extended to THz frequencies.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
    [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
    [CrossRef] [PubMed]
  3. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
    [CrossRef] [PubMed]
  4. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Theory of negative refraction in periodic stratified metamaterials,” Opt. Express18, 27916–27929 (2010).
    [CrossRef]
  5. J. B. Pendry, “Perfect cylindrical lenses,” Opt. Express11, 755–760 (2003).
    [CrossRef] [PubMed]
  6. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
    [CrossRef] [PubMed]
  7. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B78, 241103(R) (2008).
    [CrossRef]
  8. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403 (2008).
    [CrossRef]
  9. J. Park, K. Kim, and B. Lee, “Complete tunneling of light through a composite barrier consisting of multiple layers,” Phys. Rev. A79, 023820 (2009).
    [CrossRef]
  10. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science3121780–1782 (2006).
    [CrossRef] [PubMed]
  11. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314977–980 (2006).
    [CrossRef] [PubMed]
  12. I. Gil, J. Garcha-Garcha, J. Bonache, F. Martín, M. Sorolla, and R. Marqus, “Varactor-loaded split ring resonators for tunablenotch filters at microwave frequencies,” Electron. Lett.40, 1347–1348 (2004).
    [CrossRef]
  13. I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, “Tunable split-ring resonators for nonlinear negative-index metamaterials,” Opt. Express14, 9344–9349 (2006).
    [CrossRef] [PubMed]
  14. A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express15, 1115–1127 (2007).
    [CrossRef] [PubMed]
  15. H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterial,” Nat. Photonics2, 295–298 (2008).
    [CrossRef]
  16. T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys.103, 066105 (2008).
    [CrossRef]
  17. F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett.99, 057202 (2007).
    [CrossRef] [PubMed]
  18. L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express16, 17269 (2008).
    [CrossRef] [PubMed]
  19. F. Zhang, Q. Zhao, W. Zhang, J. Sun, J. Zhou, and D. Lippens, “Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal,” Appl. Phys. Lett.97, 134103 (2010).
    [CrossRef]
  20. F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19, 1563–1568 (2011).
    [CrossRef] [PubMed]
  21. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys.96, 5338–5340 (2004).
    [CrossRef]
  22. W. Zhu, X. Zhao, and J. Guo, “Multibands of negative refractive indexes in the left-handed metamaterials with multiple dendritic structures,” Appl. Phys. Lett.92, 241116 (2008).
    [CrossRef]
  23. W. Zhu, X. Zhao, and N. Ji, “Double bands of negative refractive index in the left-handed metamaterials with asymmetric defects,” Appl. Phys. Lett.90, 011911 (2007).
    [CrossRef]
  24. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88, 041109 (2006).
    [CrossRef]

2011

2010

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Theory of negative refraction in periodic stratified metamaterials,” Opt. Express18, 27916–27929 (2010).
[CrossRef]

F. Zhang, Q. Zhao, W. Zhang, J. Sun, J. Zhou, and D. Lippens, “Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal,” Appl. Phys. Lett.97, 134103 (2010).
[CrossRef]

2009

J. Park, K. Kim, and B. Lee, “Complete tunneling of light through a composite barrier consisting of multiple layers,” Phys. Rev. A79, 023820 (2009).
[CrossRef]

2008

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterial,” Nat. Photonics2, 295–298 (2008).
[CrossRef]

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys.103, 066105 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B78, 241103(R) (2008).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403 (2008).
[CrossRef]

W. Zhu, X. Zhao, and J. Guo, “Multibands of negative refractive indexes in the left-handed metamaterials with multiple dendritic structures,” Appl. Phys. Lett.92, 241116 (2008).
[CrossRef]

L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express16, 17269 (2008).
[CrossRef] [PubMed]

2007

A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express15, 1115–1127 (2007).
[CrossRef] [PubMed]

W. Zhu, X. Zhao, and N. Ji, “Double bands of negative refractive index in the left-handed metamaterials with asymmetric defects,” Appl. Phys. Lett.90, 011911 (2007).
[CrossRef]

F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett.99, 057202 (2007).
[CrossRef] [PubMed]

2006

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science3121780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314977–980 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88, 041109 (2006).
[CrossRef]

I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, “Tunable split-ring resonators for nonlinear negative-index metamaterials,” Opt. Express14, 9344–9349 (2006).
[CrossRef] [PubMed]

2004

I. Gil, J. Garcha-Garcha, J. Bonache, F. Martín, M. Sorolla, and R. Marqus, “Varactor-loaded split ring resonators for tunablenotch filters at microwave frequencies,” Electron. Lett.40, 1347–1348 (2004).
[CrossRef]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys.96, 5338–5340 (2004).
[CrossRef]

2003

2001

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

2000

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

Agrawal, G. P.

Armstead, D. N.

F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett.99, 057202 (2007).
[CrossRef] [PubMed]

Averitt, R. D.

H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterial,” Nat. Photonics2, 295–298 (2008).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B78, 241103(R) (2008).
[CrossRef]

Azad, A. K.

H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterial,” Nat. Photonics2, 295–298 (2008).
[CrossRef]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Bingham, C. M.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B78, 241103(R) (2008).
[CrossRef]

Bonache, J.

I. Gil, J. Garcha-Garcha, J. Bonache, F. Martín, M. Sorolla, and R. Marqus, “Varactor-loaded split ring resonators for tunablenotch filters at microwave frequencies,” Electron. Lett.40, 1347–1348 (2004).
[CrossRef]

Chen, H.

H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterial,” Nat. Photonics2, 295–298 (2008).
[CrossRef]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys.96, 5338–5340 (2004).
[CrossRef]

Chen, K.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys.96, 5338–5340 (2004).
[CrossRef]

Cummer, S. A.

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys.103, 066105 (2008).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314977–980 (2006).
[CrossRef] [PubMed]

Degiron, A.

Fan, K.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B78, 241103(R) (2008).
[CrossRef]

Garcha-Garcha, J.

I. Gil, J. Garcha-Garcha, J. Bonache, F. Martín, M. Sorolla, and R. Marqus, “Varactor-loaded split ring resonators for tunablenotch filters at microwave frequencies,” Electron. Lett.40, 1347–1348 (2004).
[CrossRef]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Gil, I.

I. Gil, J. Garcha-Garcha, J. Bonache, F. Martín, M. Sorolla, and R. Marqus, “Varactor-loaded split ring resonators for tunablenotch filters at microwave frequencies,” Electron. Lett.40, 1347–1348 (2004).
[CrossRef]

Grzegorczyk, T. M.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys.96, 5338–5340 (2004).
[CrossRef]

Guo, J.

W. Zhu, X. Zhao, and J. Guo, “Multibands of negative refractive indexes in the left-handed metamaterials with multiple dendritic structures,” Appl. Phys. Lett.92, 241116 (2008).
[CrossRef]

Hand, T. H.

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys.103, 066105 (2008).
[CrossRef]

Harris, V. G.

F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett.99, 057202 (2007).
[CrossRef] [PubMed]

Huangfu, J.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys.96, 5338–5340 (2004).
[CrossRef]

Ji, N.

W. Zhu, X. Zhao, and N. Ji, “Double bands of negative refractive index in the left-handed metamaterials with asymmetric defects,” Appl. Phys. Lett.90, 011911 (2007).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314977–980 (2006).
[CrossRef] [PubMed]

Kang, L.

Kim, K.

J. Park, K. Kim, and B. Lee, “Complete tunneling of light through a composite barrier consisting of multiple layers,” Phys. Rev. A79, 023820 (2009).
[CrossRef]

Kivshar, Y. S.

Kong, J. A.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys.96, 5338–5340 (2004).
[CrossRef]

Landy, N. I.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B78, 241103(R) (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

Lee, B.

J. Park, K. Kim, and B. Lee, “Complete tunneling of light through a composite barrier consisting of multiple layers,” Phys. Rev. A79, 023820 (2009).
[CrossRef]

Lippens, D.

F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19, 1563–1568 (2011).
[CrossRef] [PubMed]

F. Zhang, Q. Zhao, W. Zhang, J. Sun, J. Zhou, and D. Lippens, “Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal,” Appl. Phys. Lett.97, 134103 (2010).
[CrossRef]

Liu, X.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403 (2008).
[CrossRef]

Marqus, R.

I. Gil, J. Garcha-Garcha, J. Bonache, F. Martín, M. Sorolla, and R. Marqus, “Varactor-loaded split ring resonators for tunablenotch filters at microwave frequencies,” Electron. Lett.40, 1347–1348 (2004).
[CrossRef]

Martín, F.

I. Gil, J. Garcha-Garcha, J. Bonache, F. Martín, M. Sorolla, and R. Marqus, “Varactor-loaded split ring resonators for tunablenotch filters at microwave frequencies,” Electron. Lett.40, 1347–1348 (2004).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express15, 1115–1127 (2007).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314977–980 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88, 041109 (2006).
[CrossRef]

Morrison, S. K.

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

O’Hara, J. F.

H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterial,” Nat. Photonics2, 295–298 (2008).
[CrossRef]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterial,” Nat. Photonics2, 295–298 (2008).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B78, 241103(R) (2008).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403 (2008).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

Park, J.

J. Park, K. Kim, and B. Lee, “Complete tunneling of light through a composite barrier consisting of multiple layers,” Phys. Rev. A79, 023820 (2009).
[CrossRef]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science3121780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Perfect cylindrical lenses,” Opt. Express11, 755–760 (2003).
[CrossRef] [PubMed]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B78, 241103(R) (2008).
[CrossRef]

Premaratne, M.

Qiu, K.

Rachford, F. J.

F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett.99, 057202 (2007).
[CrossRef] [PubMed]

Ran, L.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys.96, 5338–5340 (2004).
[CrossRef]

Rukhlenko, I. D.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88, 041109 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science3121780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314977–980 (2006).
[CrossRef] [PubMed]

Shadrivov, I. V.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B78, 241103(R) (2008).
[CrossRef]

Shrekenhamer, D. B.

H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterial,” Nat. Photonics2, 295–298 (2008).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express15, 1115–1127 (2007).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science3121780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314977–980 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88, 041109 (2006).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

Sorolla, M.

I. Gil, J. Garcha-Garcha, J. Bonache, F. Martín, M. Sorolla, and R. Marqus, “Varactor-loaded split ring resonators for tunablenotch filters at microwave frequencies,” Electron. Lett.40, 1347–1348 (2004).
[CrossRef]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403 (2008).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314977–980 (2006).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403 (2008).
[CrossRef]

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B78, 241103(R) (2008).
[CrossRef]

Sun, J.

F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19, 1563–1568 (2011).
[CrossRef] [PubMed]

F. Zhang, Q. Zhao, W. Zhang, J. Sun, J. Zhou, and D. Lippens, “Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal,” Appl. Phys. Lett.97, 134103 (2010).
[CrossRef]

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B78, 241103(R) (2008).
[CrossRef]

Taylor, A. J.

H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterial,” Nat. Photonics2, 295–298 (2008).
[CrossRef]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

Vittoria, C.

F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett.99, 057202 (2007).
[CrossRef] [PubMed]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Zhang, F.

F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19, 1563–1568 (2011).
[CrossRef] [PubMed]

F. Zhang, Q. Zhao, W. Zhang, J. Sun, J. Zhou, and D. Lippens, “Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal,” Appl. Phys. Lett.97, 134103 (2010).
[CrossRef]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Zhang, W.

F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19, 1563–1568 (2011).
[CrossRef] [PubMed]

F. Zhang, Q. Zhao, W. Zhang, J. Sun, J. Zhou, and D. Lippens, “Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal,” Appl. Phys. Lett.97, 134103 (2010).
[CrossRef]

Zhang, X.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B78, 241103(R) (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys.96, 5338–5340 (2004).
[CrossRef]

Zhao, H.

Zhao, Q.

Zhao, X.

W. Zhu, X. Zhao, and J. Guo, “Multibands of negative refractive indexes in the left-handed metamaterials with multiple dendritic structures,” Appl. Phys. Lett.92, 241116 (2008).
[CrossRef]

W. Zhu, X. Zhao, and N. Ji, “Double bands of negative refractive index in the left-handed metamaterials with asymmetric defects,” Appl. Phys. Lett.90, 011911 (2007).
[CrossRef]

Zhou, J.

Zhu, W.

W. Zhu, X. Zhao, and J. Guo, “Multibands of negative refractive indexes in the left-handed metamaterials with multiple dendritic structures,” Appl. Phys. Lett.92, 241116 (2008).
[CrossRef]

W. Zhu, X. Zhao, and N. Ji, “Double bands of negative refractive index in the left-handed metamaterials with asymmetric defects,” Appl. Phys. Lett.90, 011911 (2007).
[CrossRef]

Appl. Phys. Lett.

W. Zhu, X. Zhao, and J. Guo, “Multibands of negative refractive indexes in the left-handed metamaterials with multiple dendritic structures,” Appl. Phys. Lett.92, 241116 (2008).
[CrossRef]

W. Zhu, X. Zhao, and N. Ji, “Double bands of negative refractive index in the left-handed metamaterials with asymmetric defects,” Appl. Phys. Lett.90, 011911 (2007).
[CrossRef]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88, 041109 (2006).
[CrossRef]

F. Zhang, Q. Zhao, W. Zhang, J. Sun, J. Zhou, and D. Lippens, “Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal,” Appl. Phys. Lett.97, 134103 (2010).
[CrossRef]

Electron. Lett.

I. Gil, J. Garcha-Garcha, J. Bonache, F. Martín, M. Sorolla, and R. Marqus, “Varactor-loaded split ring resonators for tunablenotch filters at microwave frequencies,” Electron. Lett.40, 1347–1348 (2004).
[CrossRef]

J. Appl. Phys.

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys.103, 066105 (2008).
[CrossRef]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys.96, 5338–5340 (2004).
[CrossRef]

Nat. Photonics

H. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterial,” Nat. Photonics2, 295–298 (2008).
[CrossRef]

Nature

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. A

J. Park, K. Kim, and B. Lee, “Complete tunneling of light through a composite barrier consisting of multiple layers,” Phys. Rev. A79, 023820 (2009).
[CrossRef]

Phys. Rev. B

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B78, 241103(R) (2008).
[CrossRef]

Phys. Rev. Lett.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett.99, 057202 (2007).
[CrossRef] [PubMed]

Science

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science3121780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314977–980 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Metamaterial absorber inside a microwave waveguide and (b) its unit cell. The parameters of the unit cell are l = 4.5 mm, a = 3.3 mm, b = 1.0 mm, g = w = 0.2 mm, and t = 0.8 mm. See text for details.

Fig. 2
Fig. 2

(a) Metamaterial absorber parallel to an auxiliary dielectric slab and its (b) theoretical and (c) experimental absorptivities for different separation distances d between the two layers. For simulation parameters, see the text.

Fig. 3
Fig. 3

(a) Metamaterial absorber with a horizontal half-slab. Distribution of the surface current at (b) 8.99 and (c) 10.85 GHz for d = 0, and (d) theoretical and (e) experimental absorption spectra for different d. Simulation parameters are the same as in Fig. 2.

Fig. 4
Fig. 4

(a) Metamaterial absorber with a vertical half-slab, its (b) theoretical and (c) experimental spectra, and distribution of the surface current at (d) 8.92, (e) 9.87, and (f) 10.97 GHz for d = 0. Simulation parameters are the same as in Fig. 2.

Metrics