Abstract

We propose a novel coherent self-heterodyne receiver structure based on phase modulation detection that potentially simplifies the front-end of a coherent optical receiver. The scheme has been demonstrated via simulations and experimentally for a 10 Gb/s DQPSK transmission system.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, K. Kikuchi, and T. Miyazaki, High Spectral Density Optical Communication Technology (Springer, 2010).
  2. N. Kikuchi and S. Sasaki, “Highly sensitive optical multilevel transmission of arbitrary quadrature-amplitude modulation (QAM) signals with direct detection,” J. Lightwave Technol. 28(1), 123–130 (2010).
    [CrossRef]
  3. P. J. Winzer, G. Raybon, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, D. A. Fishman, C. R. Doerr, S. Chandrasekhar, L. L. Buhl, T. J. Xia, G. Wellbrock, W. Lee, B. Basch, T. Kawanishi, K. Higuma, and Y. Painchaud, “100-Gb/s DQPSK Transmission: from laboratory experiments to field trials,” J. Lightwave Technol. 26(20), 3388–3402 (2008).
    [CrossRef]
  4. M. Seimetz, High-order Modulation for Optical Fiber Transmission (Springer, 2009).
  5. R. A. Griffin and A. C. Carter, “Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission,” WX6, OFC 2002.
  6. T. N. Huynh, L. Nguyen, and L. P. Barry, “Coherent optical receiver using phase modulation detection,” ThL5, IEEE IPC 2011.
  7. T. N. Huynh, L. Nguyen, and L. P. Barry, “Delayed self-heterodyne phase noise measurements with coherent phase modulation detection,” IEEE Photon. Technol. Lett. 24(4), 249–251 (2012).
    [CrossRef]
  8. M. Vaez-Iravani and R. Toledo-Crow, “Pure linear polarization imaging in near field scanning optical microscopy,” Appl. Phys. Lett. 63(2), 138–140 (1993).
    [CrossRef]
  9. K. Wang, Z. Ding, Y. Zeng, J. Meng, and M. Chen, “Sinusoidal B-M method based spectral domain optical coherence tomography for the elimination of complex-conjugate artifact,” Opt. Express 17(19), 16820–16833 (2009).
    [CrossRef] [PubMed]
  10. L. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
    [CrossRef]

2012 (1)

T. N. Huynh, L. Nguyen, and L. P. Barry, “Delayed self-heterodyne phase noise measurements with coherent phase modulation detection,” IEEE Photon. Technol. Lett. 24(4), 249–251 (2012).
[CrossRef]

2010 (1)

2009 (1)

2008 (1)

2000 (1)

L. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[CrossRef]

1993 (1)

M. Vaez-Iravani and R. Toledo-Crow, “Pure linear polarization imaging in near field scanning optical microscopy,” Appl. Phys. Lett. 63(2), 138–140 (1993).
[CrossRef]

Adamiecki, A.

Barry, L. P.

T. N. Huynh, L. Nguyen, and L. P. Barry, “Delayed self-heterodyne phase noise measurements with coherent phase modulation detection,” IEEE Photon. Technol. Lett. 24(4), 249–251 (2012).
[CrossRef]

Basch, B.

Buhl, L. L.

Chandrasekhar, S.

Chen, M.

Coldren, L.

L. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[CrossRef]

Corteselli, S.

Ding, Z.

Doerr, C. R.

Fishman, D. A.

Gnauck, A. H.

Higuma, K.

Huynh, T. N.

T. N. Huynh, L. Nguyen, and L. P. Barry, “Delayed self-heterodyne phase noise measurements with coherent phase modulation detection,” IEEE Photon. Technol. Lett. 24(4), 249–251 (2012).
[CrossRef]

Kawanishi, T.

Kikuchi, N.

Lee, W.

Meng, J.

Nguyen, L.

T. N. Huynh, L. Nguyen, and L. P. Barry, “Delayed self-heterodyne phase noise measurements with coherent phase modulation detection,” IEEE Photon. Technol. Lett. 24(4), 249–251 (2012).
[CrossRef]

Painchaud, Y.

Raybon, G.

Sasaki, S.

Song, H.

Toledo-Crow, R.

M. Vaez-Iravani and R. Toledo-Crow, “Pure linear polarization imaging in near field scanning optical microscopy,” Appl. Phys. Lett. 63(2), 138–140 (1993).
[CrossRef]

Vaez-Iravani, M.

M. Vaez-Iravani and R. Toledo-Crow, “Pure linear polarization imaging in near field scanning optical microscopy,” Appl. Phys. Lett. 63(2), 138–140 (1993).
[CrossRef]

Wang, K.

Wellbrock, G.

Winzer, P. J.

Xia, T. J.

Zeng, Y.

Appl. Phys. Lett. (1)

M. Vaez-Iravani and R. Toledo-Crow, “Pure linear polarization imaging in near field scanning optical microscopy,” Appl. Phys. Lett. 63(2), 138–140 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. N. Huynh, L. Nguyen, and L. P. Barry, “Delayed self-heterodyne phase noise measurements with coherent phase modulation detection,” IEEE Photon. Technol. Lett. 24(4), 249–251 (2012).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Other (4)

M. Nakazawa, K. Kikuchi, and T. Miyazaki, High Spectral Density Optical Communication Technology (Springer, 2010).

M. Seimetz, High-order Modulation for Optical Fiber Transmission (Springer, 2009).

R. A. Griffin and A. C. Carter, “Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission,” WX6, OFC 2002.

T. N. Huynh, L. Nguyen, and L. P. Barry, “Coherent optical receiver using phase modulation detection,” ThL5, IEEE IPC 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experiment setup for self-heterodyne receiver with PM detection (a) and self-homodyne receiver with 90° hybrid (b).

Fig. 2
Fig. 2

Off-line DSP and DQPSK constellation of self-heterodyne receiver with PM detection method (a), (c), and self-homodyne receiver with 90° hybrid method (b), (d).

Fig. 3
Fig. 3

EVM versus received power from experimental results (a) and simulation results (b).

Fig. 4
Fig. 4

Example power spectral densities of the photo-detector outputs with PM detection (a) and self-homodyne methods (b).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E(t)= P a(t) e jφ(t) e j ω o t ,
E i (t)= 1 2 ×[ E(t T s )E(t)× e j[ bsin( ω c t+ φ c ) ] ],
i(t)=× E i (t) E i (t) = 1 4 ×P{ a 2 (t)+ a 2 (t T s )2a(t)a(t T s )cos[ ω o T s +ϕ(t)ϕ(t T s )+bsin( ω c t+ ϕ c ) ] }
i(t)= 1 2 ×Pa(t)a(t T s )cos[ ω o T s +ϕ(t)ϕ(t T s )+bsin( ω c t+ ϕ c ) ]
i(t)= 1 2 Pa(t)a(t T s )× { cos[ ω o T s +ϕ(t)ϕ(t T s ) ]cos[ bsin( ω c t+ ϕ c ) ]sin[ ω o T s +ϕ(t)ϕ(t T s ) ]sin[ bsin( ω c t+ ϕ c ) ] }
cos[ bsin( ω c t+ ϕ c ) ]= J o (b)+2 keven J k (b)cos[ k( ω c t+ ϕ c ) ] ,
sin[ bsin( ω c t+ ϕ c ) ]=2 kodd J k (b)sin[ k( ω c t+ ϕ c ) ] ,
i(t)= 1 2 P[ J 0 (b)I(t)+2 J 1 (b)Q(t)sin( ω c t+ ϕ c ) ],
γ s = G N s m(G1) n sp N s m n sp ,

Metrics