Abstract

We experimentally study the optical emission behavior of a linear array of dielectric microspheres with gain. The microspheres are randomly arranged and well-separated, and can only couple via radiative modes. We observe resolution-limited, ultra-narrowband modes in the longitudinal emission, which constitutes collective lasing from the entire array, inferred from the observation of a lasing threshold. The lasing modes show wavelength selectivity, wherein the lasing probability is large only in specific frequency bands while being inhibited at other wavelengths, a behavior which is independent of the degree of configurational randomness. Analysis of the frequency bands indicates the participation of Fabry-Perot resonances of the individual microspheres in the collective emission.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, eds., Focus Issue: Collective Phenomena, Opt. Express 19, (2011).
  2. S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, “Collective phenomena in photonic, plasmonic and hybrid structures,” Opt. Express 19, 22024–22028 (2011).
    [CrossRef] [PubMed]
  3. S. V. Boriskina, “Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis,” J. Opt. Soc. Am. B 23, 1565–1573 (2006).
    [CrossRef]
  4. L. I. Deych and O. Roslyak, “Photonic band mixing in linear chains of optically coupled microspheres,” Phys. Rev. E 73, 036606 (2006).
    [CrossRef]
  5. L. I. Deych, C. Schmidt, A. Chipouline, T. Pertsch, and A. Tünnermann, “Propagation of the fundamental whispering gallery modes in a linear chain of microspheres,” App. Phys. B 93, 21–30 (2008).
    [CrossRef]
  6. Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94, 203905 (2005).
    [CrossRef] [PubMed]
  7. A. Nakagawa, S. Ishii, and T. Baba, “Photonic molecule laser composed of GaInAsP microdisks,” Appl. Phys. Lett. 86, 041112 (2005).
    [CrossRef]
  8. Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437–2439 (2003).
    [CrossRef] [PubMed]
  9. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
    [CrossRef]
  10. Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31, 389–391 (2006).
    [CrossRef] [PubMed]
  11. A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32, 409–411 (2007).
    [CrossRef] [PubMed]
  12. V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” App. Phys. Lett. 85, 5508–5510 (2004).
    [CrossRef]
  13. S. Mookherjea, “Semiconductor coupled-resonator optical waveguide laser,” App. Phys. Lett. 84, 3265–3267 (2004).
    [CrossRef]
  14. E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes,” Opt. Lett. 31, 921–923 (2006).
    [CrossRef] [PubMed]
  15. H. B. Lin, J. D. Eversole, and A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–1023 (1990).
    [CrossRef]
  16. S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
    [CrossRef]
  17. Optical processes in microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, 1996).
    [CrossRef]
  18. A. J. Campillo and H. B. Lin, “Absorption and fluorescence spectroscopy of aerosols,” in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, 1988), pp. 141–202.
  19. J. K. S. Poon and A. Yariv, “Active coupled-resonator optical waveguides. I. Gain enhancement and noise,” J. Opt. Soc. Am. B 242378–2388 (2007).
    [CrossRef]
  20. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008).
    [CrossRef] [PubMed]
  21. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
    [CrossRef] [PubMed]

2011 (2)

S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, eds., Focus Issue: Collective Phenomena, Opt. Express 19, (2011).

S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, “Collective phenomena in photonic, plasmonic and hybrid structures,” Opt. Express 19, 22024–22028 (2011).
[CrossRef] [PubMed]

2008 (2)

L. I. Deych, C. Schmidt, A. Chipouline, T. Pertsch, and A. Tünnermann, “Propagation of the fundamental whispering gallery modes in a linear chain of microspheres,” App. Phys. B 93, 21–30 (2008).
[CrossRef]

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (5)

2005 (2)

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94, 203905 (2005).
[CrossRef] [PubMed]

A. Nakagawa, S. Ishii, and T. Baba, “Photonic molecule laser composed of GaInAsP microdisks,” Appl. Phys. Lett. 86, 041112 (2005).
[CrossRef]

2004 (2)

V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” App. Phys. Lett. 85, 5508–5510 (2004).
[CrossRef]

S. Mookherjea, “Semiconductor coupled-resonator optical waveguide laser,” App. Phys. Lett. 84, 3265–3267 (2004).
[CrossRef]

2003 (1)

1999 (1)

1990 (1)

H. B. Lin, J. D. Eversole, and A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–1023 (1990).
[CrossRef]

1986 (1)

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef]

Ashili, S. P.

V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” App. Phys. Lett. 85, 5508–5510 (2004).
[CrossRef]

Astratov, V. N.

S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, eds., Focus Issue: Collective Phenomena, Opt. Express 19, (2011).

S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, “Collective phenomena in photonic, plasmonic and hybrid structures,” Opt. Express 19, 22024–22028 (2011).
[CrossRef] [PubMed]

A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32, 409–411 (2007).
[CrossRef] [PubMed]

V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” App. Phys. Lett. 85, 5508–5510 (2004).
[CrossRef]

Baba, T.

A. Nakagawa, S. Ishii, and T. Baba, “Photonic molecule laser composed of GaInAsP microdisks,” Appl. Phys. Lett. 86, 041112 (2005).
[CrossRef]

Backman, V.

Benson, T. M.

Boriskina, S. V.

Campillo, A. J.

H. B. Lin, J. D. Eversole, and A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–1023 (1990).
[CrossRef]

A. J. Campillo and H. B. Lin, “Absorption and fluorescence spectroscopy of aerosols,” in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, 1988), pp. 141–202.

Chang, R. K.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef]

Chen, Z.

Chipouline, A.

L. I. Deych, C. Schmidt, A. Chipouline, T. Pertsch, and A. Tünnermann, “Propagation of the fundamental whispering gallery modes in a linear chain of microspheres,” App. Phys. B 93, 21–30 (2008).
[CrossRef]

Deych, L. I.

L. I. Deych, C. Schmidt, A. Chipouline, T. Pertsch, and A. Tünnermann, “Propagation of the fundamental whispering gallery modes in a linear chain of microspheres,” App. Phys. B 93, 21–30 (2008).
[CrossRef]

L. I. Deych and O. Roslyak, “Photonic band mixing in linear chains of optically coupled microspheres,” Phys. Rev. E 73, 036606 (2006).
[CrossRef]

Eversole, J. D.

H. B. Lin, J. D. Eversole, and A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–1023 (1990).
[CrossRef]

Franchak, J. P.

V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” App. Phys. Lett. 85, 5508–5510 (2004).
[CrossRef]

Ge, L.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008).
[CrossRef] [PubMed]

Hara, Y.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94, 203905 (2005).
[CrossRef] [PubMed]

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437–2439 (2003).
[CrossRef] [PubMed]

Ishii, S.

A. Nakagawa, S. Ishii, and T. Baba, “Photonic molecule laser composed of GaInAsP microdisks,” Appl. Phys. Lett. 86, 041112 (2005).
[CrossRef]

Kapitonov, A. M.

Kuwata-Gonokami, M.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94, 203905 (2005).
[CrossRef] [PubMed]

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437–2439 (2003).
[CrossRef] [PubMed]

Lee, R. K.

Lin, H. B.

H. B. Lin, J. D. Eversole, and A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–1023 (1990).
[CrossRef]

A. J. Campillo and H. B. Lin, “Absorption and fluorescence spectroscopy of aerosols,” in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, 1988), pp. 141–202.

Mookherjea, S.

S. Mookherjea, “Semiconductor coupled-resonator optical waveguide laser,” App. Phys. Lett. 84, 3265–3267 (2004).
[CrossRef]

Mukaiyama, T.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94, 203905 (2005).
[CrossRef] [PubMed]

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437–2439 (2003).
[CrossRef] [PubMed]

Nakagawa, A.

A. Nakagawa, S. Ishii, and T. Baba, “Photonic molecule laser composed of GaInAsP microdisks,” Appl. Phys. Lett. 86, 041112 (2005).
[CrossRef]

Nosich, A. I.

Pertsch, T.

L. I. Deych, C. Schmidt, A. Chipouline, T. Pertsch, and A. Tünnermann, “Propagation of the fundamental whispering gallery modes in a linear chain of microspheres,” App. Phys. B 93, 21–30 (2008).
[CrossRef]

Podolskiy, V. A.

S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, eds., Focus Issue: Collective Phenomena, Opt. Express 19, (2011).

S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, “Collective phenomena in photonic, plasmonic and hybrid structures,” Opt. Express 19, 22024–22028 (2011).
[CrossRef] [PubMed]

Poon, J. K. S.

Povinelli, M.

S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, “Collective phenomena in photonic, plasmonic and hybrid structures,” Opt. Express 19, 22024–22028 (2011).
[CrossRef] [PubMed]

S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, eds., Focus Issue: Collective Phenomena, Opt. Express 19, (2011).

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef] [PubMed]

Qian, S. X.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef] [PubMed]

Roslyak, O.

L. I. Deych and O. Roslyak, “Photonic band mixing in linear chains of optically coupled microspheres,” Phys. Rev. E 73, 036606 (2006).
[CrossRef]

Rotter, S.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008).
[CrossRef] [PubMed]

Scherer, A.

Schmidt, C.

L. I. Deych, C. Schmidt, A. Chipouline, T. Pertsch, and A. Tünnermann, “Propagation of the fundamental whispering gallery modes in a linear chain of microspheres,” App. Phys. B 93, 21–30 (2008).
[CrossRef]

Sewell, P.

Smotrova, E. I.

Snow, J. B.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef]

Stone, A. D.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008).
[CrossRef] [PubMed]

Taflove, A.

Takeda, K.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94, 203905 (2005).
[CrossRef] [PubMed]

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Photonic molecule lasing,” Opt. Lett. 28, 2437–2439 (2003).
[CrossRef] [PubMed]

Tünnermann, A.

L. I. Deych, C. Schmidt, A. Chipouline, T. Pertsch, and A. Tünnermann, “Propagation of the fundamental whispering gallery modes in a linear chain of microspheres,” App. Phys. B 93, 21–30 (2008).
[CrossRef]

Türeci, H. E.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008).
[CrossRef] [PubMed]

Tzeng, H. M.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef]

Xu, Y.

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef] [PubMed]

Yariv, A.

Zayats, A. V.

S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, eds., Focus Issue: Collective Phenomena, Opt. Express 19, (2011).

S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, “Collective phenomena in photonic, plasmonic and hybrid structures,” Opt. Express 19, 22024–22028 (2011).
[CrossRef] [PubMed]

App. Phys. B (1)

L. I. Deych, C. Schmidt, A. Chipouline, T. Pertsch, and A. Tünnermann, “Propagation of the fundamental whispering gallery modes in a linear chain of microspheres,” App. Phys. B 93, 21–30 (2008).
[CrossRef]

App. Phys. Lett. (2)

V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” App. Phys. Lett. 85, 5508–5510 (2004).
[CrossRef]

S. Mookherjea, “Semiconductor coupled-resonator optical waveguide laser,” App. Phys. Lett. 84, 3265–3267 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

A. Nakagawa, S. Ishii, and T. Baba, “Photonic molecule laser composed of GaInAsP microdisks,” Appl. Phys. Lett. 86, 041112 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef] [PubMed]

Opt. Express (2)

S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, eds., Focus Issue: Collective Phenomena, Opt. Express 19, (2011).

S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, “Collective phenomena in photonic, plasmonic and hybrid structures,” Opt. Express 19, 22024–22028 (2011).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. E (1)

L. I. Deych and O. Roslyak, “Photonic band mixing in linear chains of optically coupled microspheres,” Phys. Rev. E 73, 036606 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94, 203905 (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

H. B. Lin, J. D. Eversole, and A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–1023 (1990).
[CrossRef]

Science (2)

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef]

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008).
[CrossRef] [PubMed]

Other (2)

Optical processes in microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, 1996).
[CrossRef]

A. J. Campillo and H. B. Lin, “Absorption and fluorescence spectroscopy of aerosols,” in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, 1988), pp. 141–202.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The linear chain of microdroplets is created by a vibrating orifice droplet generator V. Lens L1 directs the emission from the scatterers into the spectrometer-CCD assembly for spectral analysis, while L2 images the scatterers onto the imaging CCD. Legend: M1: Mirror for beam steering, S: Spectrometer, CCD1: CCD for spectral measurements, L1: Lens, BD: Beam Dump, L2: Lens, CCD2: CCD for imaging the scatterers, F: Filter to absorb scattered pump light, M2: Mirror for redirecting the longitudinal emission into the spectrometer. Inset shows the schematic to obtain simultaneous spectra from transverse and longitudinal emission.

Fig. 2
Fig. 2

[A] A quasiperiodic manifestation of the array. [B] Red curve: Observed WGM spectrum, as obtained from transverse emission. Blue curve: Theoretically calculated Mie resonance curve, yielding a microsphere diameter of 16.5 μm. [C] A random configuration of the array, diameter ∼23.1 μm. [D] Histogram of the interdroplet separation (center to center) shows a spread of >20 μm.

Fig. 3
Fig. 3

[A] Three spectra of the longitudinal emission from the quasiperiodic configuration, at Ep = 0.55 μJ. [B] Same for the random configuration, at Ep = 0.55 μJ. [C]Two sets (a) and (b) of spatio-spectral data from the spectrometer-CCD, displaying simultaneously grabbed longitudinal and transverse emission. The top panel shows the longitudinal spectrum. Middle panel shows the corresponding spectral image, with bright points at the peak positions. The bottom panel shows spectral image of the transverse emission, showing bright vertical streaks at the positions of the peaks. Also seen, only in the transverse direction, are the characteristic WGM modes (yellow arrows) of the microspheres. [D] Output intensity as a function of input intensity shows a lasing threshold at Ep = 0.12 μJ for the collective emission. The threshold for the WGM lasing is lower.

Fig. 4
Fig. 4

[A] Histogram of the lasing wavelengths from the quasiperiodic configuration. δλ indicates the separation between the bunches. [B] Same for the random configuration. [C] X-axis shows the WGM mode separation. The curve marked by blue circles depicts the calculated microdroplet diameter, as labeled on the right Y-axis. The left Y-axis shows the separation in the histogram bunches marked as dark squares. The red circles depict the calculated Fabry-Perot (FP) free spectral range for a FP resonator with the corresponding diameter. Inset: Schematic of the FP participation in the optical transport.

Metrics