Abstract

We demonstrate single-mode uniform and parabolically tapered three-dimensional waveguides fabricated via direct-write lithography in diffusion-based photopolymers. Modulation of the writing power is shown to compensate Beer-Lambert absorption in the single-photon initiator and to provide precise control of modal tapers. A laminated sample preparation is introduced to enable full 3D characterization of these modal tapers without the need for sample polishing which is difficult for this class of polymer. The accuracy and repeatability of this modal characterization is shown to allow precise measurement of propagation loss from single samples. These testing procedures are used to demonstrate single-mode waveguides with 0.147 dB/cm excess propagation loss and symmetrical tapers up to 1:2.5 using 1.5 microwatts of continuous write power.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
    [CrossRef] [PubMed]
  3. J. Ishihara, K. Komatsu, O. Sugihara, and T. Kaino, “Fabrication of three-dimensional calixarene polymer waveguides using two-photon assisted polymerization,” Appl. Phys. Lett. 90(3), 033511 (2007).
    [CrossRef]
  4. K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27(20), 1782–1784 (2002).
    [CrossRef] [PubMed]
  5. K. L. Deng, T. Gorczyca, B. K. Lee, H. Xia, R. Guida, and T. Karras, “Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling,” IEEE J. Sel. Top. Quantum Electron. 12(5), 923–930 (2006).
    [CrossRef]
  6. O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photon. Technol. Lett. 16(3), 804–806 (2004).
    [CrossRef]
  7. R. S. Fan and R. B. Hooker, “Tapered polymer single-mode waveguides for mode transformation,” J. Lightwave Technol. 17(3), 466–474 (1999).
    [CrossRef]
  8. R. Inaba, M. Kato, M. Sagawa, and H. Akahoshi, “Two-dimensional mode size transformation by \delta n-controlled polymer waveguides,” J. Lightwave Technol. 16(4), 620–624 (1998).
    [CrossRef]
  9. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett. 18(13), 1035–1037 (1993).
    [CrossRef] [PubMed]
  10. C. J. Cogswell and C. J. R. Sheppard, “Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging,” J. Microsc. 165(1), 81–101 (1992).
    [CrossRef]
  11. S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
    [CrossRef] [PubMed]
  12. A. C. Sullivan and R. R. McLeod, “Tomographic reconstruction of weak, replicated index structures embedded in a volume,” Opt. Express 15(21), 14202–14212 (2007).
    [CrossRef] [PubMed]
  13. M. R. Ayres and R. R. McLeod, “Scanning transmission microscopy using a position-sensitive detector,” Appl. Opt. 45(33), 8410–8418 (2006).
    [CrossRef] [PubMed]
  14. T. Wilson, J. N. Gannaway, and C. J. R. Sheppard, “Optical fibre profiling using a scanning optical microscope,” Opt. Quantum Electron. 12(4), 341–345 (1980).
    [CrossRef]
  15. W. J. Gambogi, A. M. Weber, and T. J. Trout, “Advances and applications of Dupont holographic photopolymers,” Proc. SPIE 2043, 2–13 (1994).
    [CrossRef]
  16. K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage: From Theory to Practical Systems (John Wiley & Sons, 2010).
  17. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46(3), 295–301 (2007).
    [CrossRef] [PubMed]
  18. B. Cai, K. Komatsu, O. Sugihara, M. Kagami, M. Tsuchimori, T. Matsui, and T. Kaino, “A three-dimensional polymeric optical circuit fabrication using a femtosecond laser-assisted self written waveguide technique,” Appl. Phys. Lett. 92(25), 253302 (2008).
    [CrossRef]
  19. D. A. Waidman, R. T. Ingwall, P. K. Dhal, M. G. Homer, E. S. Koib, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
    [CrossRef]
  20. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24(7), 487–489 (1999).
    [CrossRef] [PubMed]
  21. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005).
    [CrossRef] [PubMed]
  22. DataRay Incorporated, WinCamDTM Series CCD/CMOS Beam Imagers User Manual, Rev. 1007b, page 42, DataRay Incorporated, Bella Vista CA (2010).
  23. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), pp. 337–342.
  24. K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, “Coupling chain length dependent and reaction diffusion controlled termination in the free radical polymerization of multifunctional(meth)acrylates,” Macromolecules 35(21), 7968–7975 (2002).
    [CrossRef]

2008 (2)

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[CrossRef] [PubMed]

B. Cai, K. Komatsu, O. Sugihara, M. Kagami, M. Tsuchimori, T. Matsui, and T. Kaino, “A three-dimensional polymeric optical circuit fabrication using a femtosecond laser-assisted self written waveguide technique,” Appl. Phys. Lett. 92(25), 253302 (2008).
[CrossRef]

2007 (3)

2006 (3)

2005 (1)

2004 (1)

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photon. Technol. Lett. 16(3), 804–806 (2004).
[CrossRef]

2002 (2)

K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, “Coupling chain length dependent and reaction diffusion controlled termination in the free radical polymerization of multifunctional(meth)acrylates,” Macromolecules 35(21), 7968–7975 (2002).
[CrossRef]

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27(20), 1782–1784 (2002).
[CrossRef] [PubMed]

1999 (2)

1998 (1)

1996 (2)

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

D. A. Waidman, R. T. Ingwall, P. K. Dhal, M. G. Homer, E. S. Koib, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

1994 (1)

W. J. Gambogi, A. M. Weber, and T. J. Trout, “Advances and applications of Dupont holographic photopolymers,” Proc. SPIE 2043, 2–13 (1994).
[CrossRef]

1993 (1)

1992 (1)

C. J. Cogswell and C. J. R. Sheppard, “Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging,” J. Microsc. 165(1), 81–101 (1992).
[CrossRef]

1980 (1)

T. Wilson, J. N. Gannaway, and C. J. R. Sheppard, “Optical fibre profiling using a scanning optical microscope,” Opt. Quantum Electron. 12(4), 341–345 (1980).
[CrossRef]

Akahoshi, H.

Ams, M.

Ayres, M. R.

Berchtold, K. A.

K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, “Coupling chain length dependent and reaction diffusion controlled termination in the free radical polymerization of multifunctional(meth)acrylates,” Macromolecules 35(21), 7968–7975 (2002).
[CrossRef]

Bowman, C. N.

K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, “Coupling chain length dependent and reaction diffusion controlled termination in the free radical polymerization of multifunctional(meth)acrylates,” Macromolecules 35(21), 7968–7975 (2002).
[CrossRef]

Cai, B.

B. Cai, K. Komatsu, O. Sugihara, M. Kagami, M. Tsuchimori, T. Matsui, and T. Kaino, “A three-dimensional polymeric optical circuit fabrication using a femtosecond laser-assisted self written waveguide technique,” Appl. Phys. Lett. 92(25), 253302 (2008).
[CrossRef]

Carre, C.

Cogswell, C. J.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[CrossRef] [PubMed]

C. J. Cogswell and C. J. R. Sheppard, “Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging,” J. Microsc. 165(1), 81–101 (1992).
[CrossRef]

Crégut, O.

Davis, K. M.

Deng, K. L.

K. L. Deng, T. Gorczyca, B. K. Lee, H. Xia, R. Guida, and T. Karras, “Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling,” IEEE J. Sel. Top. Quantum Electron. 12(5), 923–930 (2006).
[CrossRef]

Dhal, P. K.

D. A. Waidman, R. T. Ingwall, P. K. Dhal, M. G. Homer, E. S. Koib, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Dhar, L.

Dorkenoo, K.

Endo, H.

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photon. Technol. Lett. 16(3), 804–806 (2004).
[CrossRef]

Fan, R. S.

Fort, A.

Frisken, S. J.

Gambogi, W. J.

W. J. Gambogi, A. M. Weber, and T. J. Trout, “Advances and applications of Dupont holographic photopolymers,” Proc. SPIE 2043, 2–13 (1994).
[CrossRef]

Gannaway, J. N.

T. Wilson, J. N. Gannaway, and C. J. R. Sheppard, “Optical fibre profiling using a scanning optical microscope,” Opt. Quantum Electron. 12(4), 341–345 (1980).
[CrossRef]

Gillot, F.

Gorczyca, T.

K. L. Deng, T. Gorczyca, B. K. Lee, H. Xia, R. Guida, and T. Karras, “Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling,” IEEE J. Sel. Top. Quantum Electron. 12(5), 923–930 (2006).
[CrossRef]

Grabowski, M. W.

Guida, R.

K. L. Deng, T. Gorczyca, B. K. Lee, H. Xia, R. Guida, and T. Karras, “Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling,” IEEE J. Sel. Top. Quantum Electron. 12(5), 923–930 (2006).
[CrossRef]

Hale, A.

Hirao, K.

Homer, M. G.

D. A. Waidman, R. T. Ingwall, P. K. Dhal, M. G. Homer, E. S. Koib, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Hooker, R. B.

Inaba, R.

Ingwall, R. T.

D. A. Waidman, R. T. Ingwall, P. K. Dhal, M. G. Homer, E. S. Koib, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Ishihara, J.

J. Ishihara, K. Komatsu, O. Sugihara, and T. Kaino, “Fabrication of three-dimensional calixarene polymer waveguides using two-photon assisted polymerization,” Appl. Phys. Lett. 90(3), 033511 (2007).
[CrossRef]

Itoh, K.

Kagami, M.

B. Cai, K. Komatsu, O. Sugihara, M. Kagami, M. Tsuchimori, T. Matsui, and T. Kaino, “A three-dimensional polymeric optical circuit fabrication using a femtosecond laser-assisted self written waveguide technique,” Appl. Phys. Lett. 92(25), 253302 (2008).
[CrossRef]

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photon. Technol. Lett. 16(3), 804–806 (2004).
[CrossRef]

Kaino, T.

B. Cai, K. Komatsu, O. Sugihara, M. Kagami, M. Tsuchimori, T. Matsui, and T. Kaino, “A three-dimensional polymeric optical circuit fabrication using a femtosecond laser-assisted self written waveguide technique,” Appl. Phys. Lett. 92(25), 253302 (2008).
[CrossRef]

J. Ishihara, K. Komatsu, O. Sugihara, and T. Kaino, “Fabrication of three-dimensional calixarene polymer waveguides using two-photon assisted polymerization,” Appl. Phys. Lett. 90(3), 033511 (2007).
[CrossRef]

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photon. Technol. Lett. 16(3), 804–806 (2004).
[CrossRef]

Karras, T.

K. L. Deng, T. Gorczyca, B. K. Lee, H. Xia, R. Guida, and T. Karras, “Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling,” IEEE J. Sel. Top. Quantum Electron. 12(5), 923–930 (2006).
[CrossRef]

Kato, M.

Katz, H. E.

King, S. V.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[CrossRef] [PubMed]

Koib, E. S.

D. A. Waidman, R. T. Ingwall, P. K. Dhal, M. G. Homer, E. S. Koib, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Komatsu, K.

B. Cai, K. Komatsu, O. Sugihara, M. Kagami, M. Tsuchimori, T. Matsui, and T. Kaino, “A three-dimensional polymeric optical circuit fabrication using a femtosecond laser-assisted self written waveguide technique,” Appl. Phys. Lett. 92(25), 253302 (2008).
[CrossRef]

J. Ishihara, K. Komatsu, O. Sugihara, and T. Kaino, “Fabrication of three-dimensional calixarene polymer waveguides using two-photon assisted polymerization,” Appl. Phys. Lett. 90(3), 033511 (2007).
[CrossRef]

Lee, B. K.

K. L. Deng, T. Gorczyca, B. K. Lee, H. Xia, R. Guida, and T. Karras, “Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling,” IEEE J. Sel. Top. Quantum Electron. 12(5), 923–930 (2006).
[CrossRef]

Li, H.-Y. S.

D. A. Waidman, R. T. Ingwall, P. K. Dhal, M. G. Homer, E. S. Koib, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Libertun, A.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[CrossRef] [PubMed]

Lovestead, T. M.

K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, “Coupling chain length dependent and reaction diffusion controlled termination in the free radical polymerization of multifunctional(meth)acrylates,” Macromolecules 35(21), 7968–7975 (2002).
[CrossRef]

Mager, L.

Marshall, G. D.

Matsui, T.

B. Cai, K. Komatsu, O. Sugihara, M. Kagami, M. Tsuchimori, T. Matsui, and T. Kaino, “A three-dimensional polymeric optical circuit fabrication using a femtosecond laser-assisted self written waveguide technique,” Appl. Phys. Lett. 92(25), 253302 (2008).
[CrossRef]

McLeod, R. R.

Minns, R. A.

D. A. Waidman, R. T. Ingwall, P. K. Dhal, M. G. Homer, E. S. Koib, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Miura, K.

Nishii, J.

Okamoto, N.

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photon. Technol. Lett. 16(3), 804–806 (2004).
[CrossRef]

Piestun, R.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[CrossRef] [PubMed]

Preza, C.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[CrossRef] [PubMed]

Sagawa, M.

Schild, H. G.

D. A. Waidman, R. T. Ingwall, P. K. Dhal, M. G. Homer, E. S. Koib, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Schilling, F. C.

Schilling, M. L.

Schnoes, M. G.

Sheppard, C. J. R.

C. J. Cogswell and C. J. R. Sheppard, “Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging,” J. Microsc. 165(1), 81–101 (1992).
[CrossRef]

T. Wilson, J. N. Gannaway, and C. J. R. Sheppard, “Optical fibre profiling using a scanning optical microscope,” Opt. Quantum Electron. 12(4), 341–345 (1980).
[CrossRef]

Sowa, S.

Spence, D. J.

Sugihara, O.

B. Cai, K. Komatsu, O. Sugihara, M. Kagami, M. Tsuchimori, T. Matsui, and T. Kaino, “A three-dimensional polymeric optical circuit fabrication using a femtosecond laser-assisted self written waveguide technique,” Appl. Phys. Lett. 92(25), 253302 (2008).
[CrossRef]

J. Ishihara, K. Komatsu, O. Sugihara, and T. Kaino, “Fabrication of three-dimensional calixarene polymer waveguides using two-photon assisted polymerization,” Appl. Phys. Lett. 90(3), 033511 (2007).
[CrossRef]

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photon. Technol. Lett. 16(3), 804–806 (2004).
[CrossRef]

Sugimoto, N.

Sullivan, A. C.

Tamaki, T.

Trout, T. J.

W. J. Gambogi, A. M. Weber, and T. J. Trout, “Advances and applications of Dupont holographic photopolymers,” Proc. SPIE 2043, 2–13 (1994).
[CrossRef]

Tsuchie, H.

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photon. Technol. Lett. 16(3), 804–806 (2004).
[CrossRef]

Tsuchimori, M.

B. Cai, K. Komatsu, O. Sugihara, M. Kagami, M. Tsuchimori, T. Matsui, and T. Kaino, “A three-dimensional polymeric optical circuit fabrication using a femtosecond laser-assisted self written waveguide technique,” Appl. Phys. Lett. 92(25), 253302 (2008).
[CrossRef]

Waidman, D. A.

D. A. Waidman, R. T. Ingwall, P. K. Dhal, M. G. Homer, E. S. Koib, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Watanabe, W.

Weber, A. M.

W. J. Gambogi, A. M. Weber, and T. J. Trout, “Advances and applications of Dupont holographic photopolymers,” Proc. SPIE 2043, 2–13 (1994).
[CrossRef]

Wilson, T.

T. Wilson, J. N. Gannaway, and C. J. R. Sheppard, “Optical fibre profiling using a scanning optical microscope,” Opt. Quantum Electron. 12(4), 341–345 (1980).
[CrossRef]

Withford, M. J.

Xia, H.

K. L. Deng, T. Gorczyca, B. K. Lee, H. Xia, R. Guida, and T. Karras, “Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling,” IEEE J. Sel. Top. Quantum Electron. 12(5), 923–930 (2006).
[CrossRef]

Yamashita, T.

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photon. Technol. Lett. 16(3), 804–806 (2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. Ishihara, K. Komatsu, O. Sugihara, and T. Kaino, “Fabrication of three-dimensional calixarene polymer waveguides using two-photon assisted polymerization,” Appl. Phys. Lett. 90(3), 033511 (2007).
[CrossRef]

B. Cai, K. Komatsu, O. Sugihara, M. Kagami, M. Tsuchimori, T. Matsui, and T. Kaino, “A three-dimensional polymeric optical circuit fabrication using a femtosecond laser-assisted self written waveguide technique,” Appl. Phys. Lett. 92(25), 253302 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. L. Deng, T. Gorczyca, B. K. Lee, H. Xia, R. Guida, and T. Karras, “Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling,” IEEE J. Sel. Top. Quantum Electron. 12(5), 923–930 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photon. Technol. Lett. 16(3), 804–806 (2004).
[CrossRef]

J. Biomed. Opt. (1)

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[CrossRef] [PubMed]

J. Lightwave Technol. (2)

J. Microsc. (1)

C. J. Cogswell and C. J. R. Sheppard, “Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging,” J. Microsc. 165(1), 81–101 (1992).
[CrossRef]

Macromolecules (1)

K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, “Coupling chain length dependent and reaction diffusion controlled termination in the free radical polymerization of multifunctional(meth)acrylates,” Macromolecules 35(21), 7968–7975 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

T. Wilson, J. N. Gannaway, and C. J. R. Sheppard, “Optical fibre profiling using a scanning optical microscope,” Opt. Quantum Electron. 12(4), 341–345 (1980).
[CrossRef]

Proc. SPIE (2)

W. J. Gambogi, A. M. Weber, and T. J. Trout, “Advances and applications of Dupont holographic photopolymers,” Proc. SPIE 2043, 2–13 (1994).
[CrossRef]

D. A. Waidman, R. T. Ingwall, P. K. Dhal, M. G. Homer, E. S. Koib, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Other (3)

DataRay Incorporated, WinCamDTM Series CCD/CMOS Beam Imagers User Manual, Rev. 1007b, page 42, DataRay Incorporated, Bella Vista CA (2010).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), pp. 337–342.

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage: From Theory to Practical Systems (John Wiley & Sons, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical layout of the direct-write lithography system. The logarithmic neutral density filter modulates the laser with large dynamic range naturally matched to exponential Beer Lambert absorption.

Fig. 2
Fig. 2

Pseudo-cutback method developed for polymers that cannot be cut or polished. Step 1: Cast individual polymer layers. Step 2: Laminate the layers into a thick polymer sample. Step 3: Write guides through the laminated polymer sample. The material transmittance (dashed line), the incident power curve (dash-dot line) and power at the focus (solid line) along the depth are also shown. Step 4: Separate the individual layers. Step 5: Test individual layers.

Fig. 3
Fig. 3

Optical layout of the waveguide characterization system. The incident laser focus with 2.6µm 1/e2 diameter is aligned to the buried waveguide front facet by maximizing power returned through the confocal filter. This filter rejects radiation modes and out-of-focus reflections to precisely characterize total round-trip loss. Without the waveguide, the incident laser beam diffracts through the (at least) 1mm polymer slab, reflects at the mirror and (at most) 0.02% of light couples back to the detector. The magnified image of the guided mode is captured on a commercial beam profiler. A typical measured profile from a single-mode guide is shown in the inset, which is nearly perfect Gaussian in shape.

Fig. 5
Fig. 5

3D characterization of 3D tapered and untapered buried waveguides. The test procedure of Fig. 4 verifies that the waveguides are single mode at all points. The error bars are one standard deviation of seven samples at each point, demonstrating the repeatability of the process. Dotted lines are parabolic fits to show trends. Accurate data for several points could not be taken because the coupling between incident laser mode and the guided mode plummet in the weakly guiding limit so that the mode could not be captured on the beam profiler.

Fig. 4
Fig. 4

Verification of single-mode performance. (a) Test geometry. (b) Measured and theoretically calculated coupling efficiency as a function of offset in the y direction. The coupling efficiency is measured via the confocal filter to reject extraneous signals such as surface reflections and radiation modes.

Fig. 6
Fig. 6

Experimental layout and results of loss measurement for the uniform single-mode waveguides. (a) Modified cutback method for loss measurement. Couple the incident laser beam into the waveguide and capture the maximum power in the guided mode on the mode profiler. By comparing the power in the guided mode to the measured power when the incident laser beam is focused at the front surface mirror, the material absorption and loss at the reflection surfaces are calibrated out. (b) Loss versus guide length.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r 0 = 2 ρ (NA k 0 ρ1)

Metrics