Abstract

A high resolution optical vector network analyzer (OVNA) implemented based on a wideband and wavelength-tunable optical single-sideband (OSSB) modulator is proposed and experimentally demonstrated. The OSSB modulation is achieved using a phase modulator and a tunable optical filter with a passband having two steep edges and a flat top. Wideband and wavelength-tunable OSSB modulation is achieved. The incorporation of the OSSB modulator into the OVNA is experimentally evaluated. The measurement of the magnitude and phase response of an ultra-narrow-band fiber Bragg grating (FBG) and that of the stimulated Brillouin scattering (SBS) in a single-mode fiber is performed. A measurement resolution as high as 78 kHz is achieved.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001).
    [CrossRef]
  2. G. D. VanWiggeren, A. R. Motamedi, and D. M. Barley, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett. 15(2), 263–265 (2003).
    [CrossRef]
  3. J. E. Román, M. Y. Frankel, and R. D. Esman, “Spectral characterization of fiber gratings with high resolution,” Opt. Lett. 23(12), 939–941 (1998).
    [CrossRef] [PubMed]
  4. R. Hernandez, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43(10), 2418–2421 (2004).
    [CrossRef]
  5. A. Loayssa, R. Hernández, D. Benito, and S. Galech, “Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation,” Opt. Lett. 29(6), 638–640 (2004).
    [CrossRef] [PubMed]
  6. M. Sagues and A. Loayssa, “Spectral characterisation of polarisation dependent loss of optical components using optical single sideband modulation,” Electron. Lett. 47(1), 47–48 (2011).
    [CrossRef]
  7. M. Sagues and A. Loayssa, “Swept optical single sideband modulation for spectral measurement applications using stimulated Brillouin scattering,” Opt. Express 18(16), 17555–17568 (2010).
    [CrossRef] [PubMed]
  8. G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
    [CrossRef]
  9. J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550nm millimetre-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
    [CrossRef]
  10. S. R. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18(21), 2230–2232 (2006).
    [CrossRef]
  11. G. Ning, J. Q. Zhou, L. Cheng, S. Aditya, and P. Shum, “Generation of different modulation formats using Sagnac fiber loop with one electroabsorption modulator,” IEEE Photon. Technol. Lett. 20(4), 297–299 (2008).
    [CrossRef]
  12. Z. Li, H. Chi, X. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett. 23(9), 558–560 (2011).
    [CrossRef]
  13. A. Schoof, J. Grünert, S. Ritter, and A. Hemmerich, “Reducing the linewidth of a diode laser below 30 Hz by stabilization to a reference cavity with a finesse above 10(5),” Opt. Lett. 26(20), 1562–1564 (2001).
    [CrossRef] [PubMed]
  14. J. Cliche, Y. Painchaud, C. Latrasse, M. Picard, I. Alexandre, and M. Têtu, ” Ultra-Narrow Bragg grating for active semiconductor laser linewidth reduction through electrical feedback,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2007), paper BTuE2.
  15. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, New York, 2006).

2011 (2)

Z. Li, H. Chi, X. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett. 23(9), 558–560 (2011).
[CrossRef]

M. Sagues and A. Loayssa, “Spectral characterisation of polarisation dependent loss of optical components using optical single sideband modulation,” Electron. Lett. 47(1), 47–48 (2011).
[CrossRef]

2010 (1)

2008 (1)

G. Ning, J. Q. Zhou, L. Cheng, S. Aditya, and P. Shum, “Generation of different modulation formats using Sagnac fiber loop with one electroabsorption modulator,” IEEE Photon. Technol. Lett. 20(4), 297–299 (2008).
[CrossRef]

2006 (1)

S. R. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18(21), 2230–2232 (2006).
[CrossRef]

2004 (2)

R. Hernandez, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43(10), 2418–2421 (2004).
[CrossRef]

A. Loayssa, R. Hernández, D. Benito, and S. Galech, “Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation,” Opt. Lett. 29(6), 638–640 (2004).
[CrossRef] [PubMed]

2003 (1)

G. D. VanWiggeren, A. R. Motamedi, and D. M. Barley, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett. 15(2), 263–265 (2003).
[CrossRef]

2001 (2)

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001).
[CrossRef]

A. Schoof, J. Grünert, S. Ritter, and A. Hemmerich, “Reducing the linewidth of a diode laser below 30 Hz by stabilization to a reference cavity with a finesse above 10(5),” Opt. Lett. 26(20), 1562–1564 (2001).
[CrossRef] [PubMed]

1998 (1)

1997 (2)

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550nm millimetre-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

Aditya, S.

G. Ning, J. Q. Zhou, L. Cheng, S. Aditya, and P. Shum, “Generation of different modulation formats using Sagnac fiber loop with one electroabsorption modulator,” IEEE Photon. Technol. Lett. 20(4), 297–299 (2008).
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

Barley, D. M.

G. D. VanWiggeren, A. R. Motamedi, and D. M. Barley, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett. 15(2), 263–265 (2003).
[CrossRef]

Benito, D.

R. Hernandez, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43(10), 2418–2421 (2004).
[CrossRef]

A. Loayssa, R. Hernández, D. Benito, and S. Galech, “Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation,” Opt. Lett. 29(6), 638–640 (2004).
[CrossRef] [PubMed]

Blais, S. R.

S. R. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18(21), 2230–2232 (2006).
[CrossRef]

Cheng, L.

G. Ning, J. Q. Zhou, L. Cheng, S. Aditya, and P. Shum, “Generation of different modulation formats using Sagnac fiber loop with one electroabsorption modulator,” IEEE Photon. Technol. Lett. 20(4), 297–299 (2008).
[CrossRef]

Chi, H.

Z. Li, H. Chi, X. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett. 23(9), 558–560 (2011).
[CrossRef]

Esman, R. D.

Frankel, M. Y.

Galech, S.

Grünert, J.

Hemmerich, A.

Hernandez, R.

R. Hernandez, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43(10), 2418–2421 (2004).
[CrossRef]

Hernández, R.

Lau, K. Y.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550nm millimetre-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

Li, Z.

Z. Li, H. Chi, X. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett. 23(9), 558–560 (2011).
[CrossRef]

Loayssa, A.

M. Sagues and A. Loayssa, “Spectral characterisation of polarisation dependent loss of optical components using optical single sideband modulation,” Electron. Lett. 47(1), 47–48 (2011).
[CrossRef]

M. Sagues and A. Loayssa, “Swept optical single sideband modulation for spectral measurement applications using stimulated Brillouin scattering,” Opt. Express 18(16), 17555–17568 (2010).
[CrossRef] [PubMed]

A. Loayssa, R. Hernández, D. Benito, and S. Galech, “Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation,” Opt. Lett. 29(6), 638–640 (2004).
[CrossRef] [PubMed]

R. Hernandez, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43(10), 2418–2421 (2004).
[CrossRef]

Ludvigsen, H.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001).
[CrossRef]

Motamedi, A. R.

G. D. VanWiggeren, A. R. Motamedi, and D. M. Barley, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett. 15(2), 263–265 (2003).
[CrossRef]

Niemi, T.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001).
[CrossRef]

Ning, G.

G. Ning, J. Q. Zhou, L. Cheng, S. Aditya, and P. Shum, “Generation of different modulation formats using Sagnac fiber loop with one electroabsorption modulator,” IEEE Photon. Technol. Lett. 20(4), 297–299 (2008).
[CrossRef]

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

Park, J.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550nm millimetre-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

Ritter, S.

Román, J. E.

Sagues, M.

M. Sagues and A. Loayssa, “Spectral characterisation of polarisation dependent loss of optical components using optical single sideband modulation,” Electron. Lett. 47(1), 47–48 (2011).
[CrossRef]

M. Sagues and A. Loayssa, “Swept optical single sideband modulation for spectral measurement applications using stimulated Brillouin scattering,” Opt. Express 18(16), 17555–17568 (2010).
[CrossRef] [PubMed]

Schoof, A.

Shum, P.

G. Ning, J. Q. Zhou, L. Cheng, S. Aditya, and P. Shum, “Generation of different modulation formats using Sagnac fiber loop with one electroabsorption modulator,” IEEE Photon. Technol. Lett. 20(4), 297–299 (2008).
[CrossRef]

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

Sorin, W. V.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550nm millimetre-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

Uusimaa, M.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001).
[CrossRef]

VanWiggeren, G. D.

G. D. VanWiggeren, A. R. Motamedi, and D. M. Barley, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett. 15(2), 263–265 (2003).
[CrossRef]

Yao, J. P.

Z. Li, H. Chi, X. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett. 23(9), 558–560 (2011).
[CrossRef]

S. R. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18(21), 2230–2232 (2006).
[CrossRef]

Zhang, X.

Z. Li, H. Chi, X. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett. 23(9), 558–560 (2011).
[CrossRef]

Zhou, J. Q.

G. Ning, J. Q. Zhou, L. Cheng, S. Aditya, and P. Shum, “Generation of different modulation formats using Sagnac fiber loop with one electroabsorption modulator,” IEEE Photon. Technol. Lett. 20(4), 297–299 (2008).
[CrossRef]

Electron. Lett. (2)

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550nm millimetre-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

M. Sagues and A. Loayssa, “Spectral characterisation of polarisation dependent loss of optical components using optical single sideband modulation,” Electron. Lett. 47(1), 47–48 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001).
[CrossRef]

G. D. VanWiggeren, A. R. Motamedi, and D. M. Barley, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett. 15(2), 263–265 (2003).
[CrossRef]

S. R. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18(21), 2230–2232 (2006).
[CrossRef]

G. Ning, J. Q. Zhou, L. Cheng, S. Aditya, and P. Shum, “Generation of different modulation formats using Sagnac fiber loop with one electroabsorption modulator,” IEEE Photon. Technol. Lett. 20(4), 297–299 (2008).
[CrossRef]

Z. Li, H. Chi, X. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett. 23(9), 558–560 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

Opt. Eng. (1)

R. Hernandez, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43(10), 2418–2421 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (2)

J. Cliche, Y. Painchaud, C. Latrasse, M. Picard, I. Alexandre, and M. Têtu, ” Ultra-Narrow Bragg grating for active semiconductor laser linewidth reduction through electrical feedback,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2007), paper BTuE2.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, New York, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The optical vector network analyzer based on the proposed optical single-sideband modulation scheme. TLS: tunable laser source, PM: phase modulator, DUT: device under test, PD: photodetector, EVNA: electrical vector network analyzer.

Fig. 2
Fig. 2

Optical single-sideband signal generation using an optical filter with a passband having steep edges and a flat top. Dash line: the transmission spectrum of the optical filter; red line: the optical spectrum of the ODSB signal; and blue line: the optical spectrum of the generated OSSB signal.

Fig. 3
Fig. 3

The frequency responses of the ODSB (without filter) and OSSB (with filter) photonic link with 20-km SMF when the wavelength varied from 1535 to 1565nm. The response of the OSSB link is manually added by about 3 dB for a better comparison with that of the ODSB link.

Fig. 4
Fig. 4

The response of an ultra-narrow band phase-shifted FBG. (a) Magnitude response and (b) phase response of the phase-shifted FBG. Red line: measured by the proposed OVNA; blue line: measured by LUNA OVA CTe All Parameter Analyzer.

Fig. 5
Fig. 5

The (a) gain and (b) phase responses of the SBS in a 10.6-km SMF when the pump power is increased from 2 to 16 dBm at a step of 2 dBm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E(t)= e j ω 0 t e jγcos ω m t jk J 1 ( γ ) e j( ω 0 ω m )t + J 0 ( γ ) e j ω 0 t +j J 1 ( γ ) e j( ω 0 + ω m )t
E'( ω )=2πjk J 1 ( γ )H( ω 0 ω m )+2π J 0 ( γ )H( ω 0 )+2πj J 1 ( γ )H( ω 0 + ω m )
i AC ( ω m )4 π 2 jk J 0 ( γ ) J 1 ( γ ) H ( ω 0 ω m )H( ω 0 )+4 π 2 j J 0 ( γ ) J 1 ( γ ) H ( ω 0 )H( ω 0 + ω m )
i AC ( ω m )4 π 2 j J 0 ( γ ) J 1 ( γ )[ H ( ω 0 )H( ω 0 + ω m ) H ( ω 0 ω m )H( ω 0 )]
H( ω 0 + ω m ) i AC ( ω m ) 4j π 2 J 0 ( γ ) J 1 ( γ ) H ( ω 0 )

Metrics