Abstract

We report extremely large probe-idler separation wavelength conversion (545 nm) and unicast (700 nm) of 10-Gb/s data signals using a dispersion-engineered silicon nanowaveguide. Dispersion-engineered phase matching in the device provides a continuous four-wave-mixing efficiency 3-dB bandwidth exceeding 800 nm. We report the first data validation of wavelength conversion (data modulated probe) and unicast (data modulated pump) of 10-Gb/s data with probe-idler separations spanning 60 nm up to 700 nm accompanied with sensitivity gain in a single device. These demonstrations further validate the silicon platform as a highly broadband flexible platform for nonlinear all-optical data manipulation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Syst. Tech. J. 14(4), 3–9 (2010).
    [CrossRef]
  2. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPB7.
  3. H. C. H. Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010).
    [CrossRef] [PubMed]
  4. D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB5.
  5. D. Hillerkuss, T. Schellinger, R. Schmogrow, M. Winter, T. Vallaitis, R. Bonk, A. Marculescu, J. Li, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, K. Weingarten, T. Ellermeyer, J. Lutz, M. Möller, M. Hübner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8 Tbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPC1.
  6. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB6.
  7. J. Hashimoto, K. Koyama, T. Katsuyama, Y. Iguchi, T. Yamada, S. Takagishi, M. Ito, and A. Ishida, “1.3 um travelling-wave GaInNAs semiconductor optical amplifier,” in Optical Amplifiers and Their Applications, OSA Technical Digest Series (Optical Society of America, 2003), paper WB3.
  8. Y. Nishida, M. Yamada, T. Kanamori, K. Kobayashi, J. Temmyo, S. Sudo, and Y. Ohishi, “Development of an efficient praseodymium-doped fiber amplifier,” IEEE J. Quantum Electron. 34(8), 1332–1339 (1998).
    [CrossRef]
  9. K. S. Wu, D. Ottaway, J. Munch, D. G. Lancaster, S. Bennetts, and S. D. Jackson, “Gain-switched holmium-doped fibre laser,” Opt. Express 17(23), 20872–20877 (2009).
    [CrossRef] [PubMed]
  10. B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
    [CrossRef]
  11. S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fibre,” Electron. Lett. 39(11), 838–839 (2003).
    [CrossRef]
  12. Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol. 47(3), 257–262 (2006).
    [CrossRef]
  13. F. Gholami, S. Zlatanovic, E. Myslivets, S. Moro, B. Kuo, C. Brès, A. Wiberg, N. Alic, and S. Radic, “10Gbps parametric short-wave infrared transmitter,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThC6.
  14. A. Bogoni, X. Wu, S. Nuccio, J. Wang, and A. Willner, “640Gbit/s reconfigurable OTDM add-drop multiplexer,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMK4.
  15. E. Tangdiongga, Y. Liu, H. de Waardt, G. D. Khoe, A. M. Koonen, H. J. Dorren, X. Shu, and I. Bennion, “All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier,” Opt. Lett. 32(7), 835–837 (2007).
    [CrossRef] [PubMed]
  16. J. Van Erps, J. Schröder, T. D. Vo, M. D. Pelusi, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Automatic dispersion compensation for 1.28Tb/s OTDM signal transmission using photonic-chip-based dispersion monitoring,” Opt. Express 18(24), 25415–25421 (2010).
    [CrossRef] [PubMed]
  17. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
    [CrossRef]
  18. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
    [CrossRef] [PubMed]
  19. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010).
    [CrossRef] [PubMed]
  20. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
    [CrossRef]
  21. A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength multicasting in silicon photonic nanowires,” Opt. Express 18(17), 18047–18055 (2010).
    [CrossRef] [PubMed]
  22. H. Hu, H. Ji, M. Galili, M. Pu, H. Hansen Mulvad, L. Oxenløwe, K. Yvind, J. Hvam, and P. Jeppesen, “Silicon chip based wavelength conversion of ultra-high repetition rate data signals,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA8.
  23. H. Ji, M. Pu, M. Galili, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “Optical waveform sampling and error-free demultiplexing of 1.28 Tb/s serial data in a nanoengineered silicon waveguide,” J. Lightwave Technol. 29(4), 426–431 (2011).
    [CrossRef]
  24. N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
    [CrossRef]
  25. J. B. Driscoll, J. I. Xiaoping Liu, W. M. J. Dadap, Y. A. Green, G. M. Vlasov, Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
    [CrossRef]

2011 (2)

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

H. Ji, M. Pu, M. Galili, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “Optical waveform sampling and error-free demultiplexing of 1.28 Tb/s serial data in a nanoengineered silicon waveguide,” J. Lightwave Technol. 29(4), 426–431 (2011).
[CrossRef]

2010 (6)

2009 (2)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

K. S. Wu, D. Ottaway, J. Munch, D. G. Lancaster, S. Bennetts, and S. D. Jackson, “Gain-switched holmium-doped fibre laser,” Opt. Express 17(23), 20872–20877 (2009).
[CrossRef] [PubMed]

2008 (1)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

2007 (1)

2006 (3)

Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol. 47(3), 257–262 (2006).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[CrossRef]

2003 (1)

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fibre,” Electron. Lett. 39(11), 838–839 (2003).
[CrossRef]

1998 (1)

Y. Nishida, M. Yamada, T. Kanamori, K. Kobayashi, J. Temmyo, S. Sudo, and Y. Ohishi, “Development of an efficient praseodymium-doped fiber amplifier,” IEEE J. Quantum Electron. 34(8), 1332–1339 (1998).
[CrossRef]

Agrawal, G. P.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fibre,” Electron. Lett. 39(11), 838–839 (2003).
[CrossRef]

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Bennetts, S.

Bennion, I.

Bergman, K.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength multicasting in silicon photonic nanowires,” Opt. Express 18(17), 18047–18055 (2010).
[CrossRef] [PubMed]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Biberman, A.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength multicasting in silicon photonic nanowires,” Opt. Express 18(17), 18047–18055 (2010).
[CrossRef] [PubMed]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Boyraz, O.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[CrossRef]

Bulla, D. A.

Carter,

J. B. Driscoll, J. I. Xiaoping Liu, W. M. J. Dadap, Y. A. Green, G. M. Vlasov, Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Centanni, J. C.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fibre,” Electron. Lett. 39(11), 838–839 (2003).
[CrossRef]

Chan, J.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

Choi, D. Y.

Clausen, A. T.

Dadap, W. M. J.

J. B. Driscoll, J. I. Xiaoping Liu, W. M. J. Dadap, Y. A. Green, G. M. Vlasov, Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

de Waardt, H.

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Dimitropoulos, D.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[CrossRef]

Dorren, H. J.

Driscoll, J. B.

J. B. Driscoll, J. I. Xiaoping Liu, W. M. J. Dadap, Y. A. Green, G. M. Vlasov, Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Eggleton, B. J.

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Foster, A. C.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

Foster, M. A.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength multicasting in silicon photonic nanowires,” Opt. Express 18(17), 18047–18055 (2010).
[CrossRef] [PubMed]

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Gaeta, A. L.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010).
[CrossRef] [PubMed]

A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength multicasting in silicon photonic nanowires,” Opt. Express 18(17), 18047–18055 (2010).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Galili, M.

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Green, Y. A.

J. B. Driscoll, J. I. Xiaoping Liu, W. M. J. Dadap, Y. A. Green, G. M. Vlasov, Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Gu, Y.

Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol. 47(3), 257–262 (2006).
[CrossRef]

Hao, G.

Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol. 47(3), 257–262 (2006).
[CrossRef]

Hu, H.

Hvam, J. M.

Jackson, S. D.

Jalali, B.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[CrossRef]

Jensen, J. B.

Jeppesen, P.

Ji, H.

Jopson, R. M.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fibre,” Electron. Lett. 39(11), 838–839 (2003).
[CrossRef]

Kanamori, T.

Y. Nishida, M. Yamada, T. Kanamori, K. Kobayashi, J. Temmyo, S. Sudo, and Y. Ohishi, “Development of an efficient praseodymium-doped fiber amplifier,” IEEE J. Quantum Electron. 34(8), 1332–1339 (1998).
[CrossRef]

Khoe, G. D.

Kobayashi, K.

Y. Nishida, M. Yamada, T. Kanamori, K. Kobayashi, J. Temmyo, S. Sudo, and Y. Ohishi, “Development of an efficient praseodymium-doped fiber amplifier,” IEEE J. Quantum Electron. 34(8), 1332–1339 (1998).
[CrossRef]

Koonen, A. M.

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Lancaster, D. G.

Lee, B. G.

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Li, A.

Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol. 47(3), 257–262 (2006).
[CrossRef]

Lin, Q.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fibre,” Electron. Lett. 39(11), 838–839 (2003).
[CrossRef]

Lipson, M.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength multicasting in silicon photonic nanowires,” Opt. Express 18(17), 18047–18055 (2010).
[CrossRef] [PubMed]

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Liu, T.

Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol. 47(3), 257–262 (2006).
[CrossRef]

Liu, Y.

Luther-Davies, B.

Madden, S.

McKinstrie, C. J.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fibre,” Electron. Lett. 39(11), 838–839 (2003).
[CrossRef]

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Mulvad, H. C. H.

Munch, J.

Nishida, Y.

Y. Nishida, M. Yamada, T. Kanamori, K. Kobayashi, J. Temmyo, S. Sudo, and Y. Ohishi, “Development of an efficient praseodymium-doped fiber amplifier,” IEEE J. Quantum Electron. 34(8), 1332–1339 (1998).
[CrossRef]

Ohishi, Y.

Y. Nishida, M. Yamada, T. Kanamori, K. Kobayashi, J. Temmyo, S. Sudo, and Y. Ohishi, “Development of an efficient praseodymium-doped fiber amplifier,” IEEE J. Quantum Electron. 34(8), 1332–1339 (1998).
[CrossRef]

Ophir, N.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

Osgood, R. M.

J. B. Driscoll, J. I. Xiaoping Liu, W. M. J. Dadap, Y. A. Green, G. M. Vlasov, Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Ottaway, D.

Oxenlowe, L. K.

Oxenløwe, L. K.

Padmaraju, K.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

Pelusi, M. D.

Peucheret, C.

Pu, M.

Radic, S.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fibre,” Electron. Lett. 39(11), 838–839 (2003).
[CrossRef]

Raghunathan, V.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[CrossRef]

Salem, R.

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Schröder, J.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Shu, X.

Sudo, S.

Y. Nishida, M. Yamada, T. Kanamori, K. Kobayashi, J. Temmyo, S. Sudo, and Y. Ohishi, “Development of an efficient praseodymium-doped fiber amplifier,” IEEE J. Quantum Electron. 34(8), 1332–1339 (1998).
[CrossRef]

Tangdiongga, E.

Temmyo, J.

Y. Nishida, M. Yamada, T. Kanamori, K. Kobayashi, J. Temmyo, S. Sudo, and Y. Ohishi, “Development of an efficient praseodymium-doped fiber amplifier,” IEEE J. Quantum Electron. 34(8), 1332–1339 (1998).
[CrossRef]

Tkach, R. W.

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Syst. Tech. J. 14(4), 3–9 (2010).
[CrossRef]

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Turner-Foster, A. C.

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Van Erps, J.

Vlasov, G. M.

J. B. Driscoll, J. I. Xiaoping Liu, W. M. J. Dadap, Y. A. Green, G. M. Vlasov, Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Vo, T. D.

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Wu, K. S.

Xiaoping Liu, J. I.

J. B. Driscoll, J. I. Xiaoping Liu, W. M. J. Dadap, Y. A. Green, G. M. Vlasov, Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Yamada, M.

Y. Nishida, M. Yamada, T. Kanamori, K. Kobayashi, J. Temmyo, S. Sudo, and Y. Ohishi, “Development of an efficient praseodymium-doped fiber amplifier,” IEEE J. Quantum Electron. 34(8), 1332–1339 (1998).
[CrossRef]

Yvind, K.

Zhang, Y.

Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol. 47(3), 257–262 (2006).
[CrossRef]

Zhu, C.

Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol. 47(3), 257–262 (2006).
[CrossRef]

Bell Syst. Tech. J. (1)

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Syst. Tech. J. 14(4), 3–9 (2010).
[CrossRef]

Electron. Lett. (1)

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fibre,” Electron. Lett. 39(11), 838–839 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Nishida, M. Yamada, T. Kanamori, K. Kobayashi, J. Temmyo, S. Sudo, and Y. Ohishi, “Development of an efficient praseodymium-doped fiber amplifier,” IEEE J. Quantum Electron. 34(8), 1332–1339 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[CrossRef]

J. B. Driscoll, J. I. Xiaoping Liu, W. M. J. Dadap, Y. A. Green, G. M. Vlasov, Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

Infrared Phys. Technol. (1)

Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol. 47(3), 257–262 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (2)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Nature (1)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Other (8)

H. Hu, H. Ji, M. Galili, M. Pu, H. Hansen Mulvad, L. Oxenløwe, K. Yvind, J. Hvam, and P. Jeppesen, “Silicon chip based wavelength conversion of ultra-high repetition rate data signals,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA8.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPB7.

F. Gholami, S. Zlatanovic, E. Myslivets, S. Moro, B. Kuo, C. Brès, A. Wiberg, N. Alic, and S. Radic, “10Gbps parametric short-wave infrared transmitter,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThC6.

A. Bogoni, X. Wu, S. Nuccio, J. Wang, and A. Willner, “640Gbit/s reconfigurable OTDM add-drop multiplexer,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMK4.

D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB5.

D. Hillerkuss, T. Schellinger, R. Schmogrow, M. Winter, T. Vallaitis, R. Bonk, A. Marculescu, J. Li, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, K. Weingarten, T. Ellermeyer, J. Lutz, M. Möller, M. Hübner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8 Tbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPC1.

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB6.

J. Hashimoto, K. Koyama, T. Katsuyama, Y. Iguchi, T. Yamada, S. Takagishi, M. Ito, and A. Ishida, “1.3 um travelling-wave GaInNAs semiconductor optical amplifier,” in Optical Amplifiers and Their Applications, OSA Technical Digest Series (Optical Society of America, 2003), paper WB3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Data-validation experimental setups for (a) Wavelength and format-conversion up to 168 nm with an inset of optical microscope image of four silicon nanowaveguides in a spiral layout; (b) Wavelength and format conversion at a 545-nm probe-idler separation; and (c) Unicast of a 10-Gb/s RZ signal with a 700-nm probe-idler separation.

Fig. 2
Fig. 2

Overlaid spectra of wavelength conversion experiments recorded at the chip output, depicting conversion of 60 nm up to 168 nm. Beyond generated idlers, additional FWM products are visible at shorter wavelengths (1497 nm, 1478 nm, 1459 nm) corresponding to FWM in which two probe photons interact with a single pump photon. Some residual TDFA noise is also visible (1522 nm, 1466 nm).

Fig. 3
Fig. 3

(a) Recorded BER curves for all probe and idler signals indicating an average 1.9 dB sensitivity gain. (b) Probes’ and the idlers’ eye diagrams recorded from the inverted-data differential output port of the APD-TIA. (c) Measured APD sensitivity vs. wavelength measured with 10-Gb/s NRZ back-to-back signals. (d) Directly modulated RZ and NRZ back-to-back showing a 2-dB APD sensitivity difference.

Fig. 4
Fig. 4

(a) OSA trace recorded at the chip’s output showing wavelength conversion of a 1866-nm probe to a 1321-nm idler. TDFA noise artifacts are visible at 1450 nm, 1640 nm (not fully suppressed TDFA pump), and at the broad gain region around 1850 nm. (b) Probe BER curve recorded using an Extended-InGaAs photodetector (inset of eye diagram recorded on CSA). (c) Idler BER curve recorded on APD receiver (inset of eye diagram) and an average idlers’ BER curve based on curves recorded at 1585-nm to 1643-nm. The BER curve has 0.4 dB power penalty compared to the average idlers’ curve.

Fig. 5
Fig. 5

(a) OSA trace recorded at the chip’s output showing data unicast with a CW 1973-nm probe and a RZ 1271-nm idler. TDFA noise artifacts are now visible at ~1640 nm (not fully suppressed TDFA pump), and at the broad gain region around 1850 nm. (b) BER curv es recorded for the 10-Gb/s modulated pump before injection into the silicon chip, and the 10-Gb/s generated idler. Eye diagrams for all signals are included as insets.

Tables (1)

Tables Icon

Table 1 Wavelength Listing of Pump, Probe, and Idler Settings for the First Wavelength Conversion Experiment

Metrics