Abstract

An improved CARS setup based on noncollinear optical parametric amplifiers (NOPAs) is presented which combines broad tunability and a wide excitation bandwidth with good spectral and temporal resolution. Picosecond Raman pump and probe pulses are generated by a modified narrowband NOPA. Combining them with sub-50 fs Stokes pulses results in highly time resolved CARS spectra with line widths down to 20 cm−1. The determination of a vibrational decoherence time is demonstrated for chloroform. Beating phenomena in case of overlapping Raman bands and an increase of spectral structure for coalescing bands are observed for cyclohexane and an ionic liquid respectively.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137(3A), A801–A818 (1965).
    [CrossRef]
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).
  3. S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonanat broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
    [CrossRef]
  4. M. Fickenscher, H.-G. Purucker, and A. Laubereau, “Resonant vibrational dephasing investigated by high-precision femtosecond CARS,” Chem. Phys. Lett. 191(1-2), 182–188 (1992).
    [CrossRef]
  5. M. Schmitt, G. Knopp, A. Materny, and W. Kiefer, “Femtosecond time-resolved coherent anti-Stokes Raman scattering for the simultaneous study of ultrafast ground and excited state dynamics: iodine vapour,” Chem. Phys. Lett. 270(1-2), 9–15 (1997).
    [CrossRef]
  6. R. Lausten, O. Smirnova, B. J. Sussman, S. Gräfe, A. S. Mouritzen, and A. Stolow, “Time- and frequency-resolved coherent anti-Stokes Raman scattering spectroscopy with sub-25 fs laser pulses,” J. Chem. Phys. 128(24), 244310 (2008).
    [CrossRef] [PubMed]
  7. T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310(1-2), 65–72 (1999).
    [CrossRef]
  8. Y. H. Wang, X. Du, X. He, and Y. Q. Yang, “Investigation of coherence transfer between ‘CH3’ and ‘CH2’ groups in ethanol with time resolved multiplex CARS technique,” Vib. Spectrosc. 50(2), 303–306 (2009).
    [CrossRef]
  9. S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008).
    [CrossRef]
  10. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7(8), 350–352 (1982).
    [CrossRef] [PubMed]
  11. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [CrossRef]
  12. A. Volkmer, “Coherent vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D Appl. Phys. 38(5), R59–R81 (2005).
    [CrossRef]
  13. F. El-Diasty, “Coherent anti-Stokes Raman scattering: spectroscopy and microscopy,” Vib. Spectrosc. 55(1), 1–37 (2011).
    [CrossRef]
  14. A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50(3), 607–665 (1978).
    [CrossRef]
  15. F. M. Kamga and M. G. Sceats, “Pulse-sequenced coherent anti-Stokes Raman scattering spectroscopy: a method for suppression of the nonresonant background,” Opt. Lett. 5(3), 126–128 (1980).
    [CrossRef] [PubMed]
  16. W. Zinth, M. C. Nuss, and W. Kaiser, “A new Raman technique of superior spectral resolution,” Chem. Phys. Lett. 88(3), 257–261 (1982).
    [CrossRef]
  17. W. Zinth, M. C. Nuss, and W. Kaiser, “Line-narrowing transient Raman technique which resolves closely spaced hydrogen-bonded aggregates,” Phys. Rev. A 30(2), 1139–1141 (1984).
    [CrossRef]
  18. S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, and V. G. Tunkin, “Time-domain coherent active Raman spectroscopy of free-nitrogen jet,” J. Opt. Soc. Am. B 2(4), 640–648 (1985).
    [CrossRef]
  19. J. W. Hahn, C. W. Park, and S. N. Park, “Broadband coherent anti-Stokes Raman spectroscopy with a modeless dye laser,” Appl. Opt. 36(27), 6722–6728 (1997).
    [CrossRef] [PubMed]
  20. J. P. Kuehner, M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “High-resolution broadband N2 coherent anti-Stokes Raman spectroscopy: comparison of measurements for conventional and modeless broadband dye lasers,” Appl. Opt. 42(33), 6757–6767 (2003).
    [CrossRef] [PubMed]
  21. S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30(23), 3222–3224 (2005).
    [CrossRef] [PubMed]
  22. W. Zinth, R. Leonhardt, W. Holzapfel, and W. Kaiser, “Fast dephasing processes studied with a femtosecond coherent Raman system,” IEEE J. Quantum Electron. 24(2), 455–459 (1988).
    [CrossRef]
  23. M. Müller and J. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
    [CrossRef]
  24. J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
    [CrossRef]
  25. K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387(4-6), 436–441 (2004).
    [CrossRef]
  26. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
    [CrossRef] [PubMed]
  27. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
    [CrossRef] [PubMed]
  28. J. Rehbinder, C. Pohling, T. Buckup, and M. Motzkus, “Multiplex coherent anti-Stokes Raman microspectroscopy with tailored Stokes spectrum,” Opt. Lett. 35(22), 3721–3723 (2010).
    [CrossRef] [PubMed]
  29. M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99(10), 101109 (2011).
    [CrossRef]
  30. T. Wilhelm, J. Piel, and E. Riedle, “Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22(19), 1494–1496 (1997).
    [CrossRef] [PubMed]
  31. J. A. Shirley, R. J. Hall, and A. C. Eckbreth, “Folded BOXCARS for rotational Raman studies,” Opt. Lett. 5(9), 380–382 (1980).
    [CrossRef] [PubMed]
  32. S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89(12), 121124 (2006).
    [CrossRef]
  33. D. T. Co, J. V. Lockard, D. W. McCamant, and M. R. Wasielewski, “Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump,” Appl. Opt. 49(10), 1880–1885 (2010).
    [CrossRef] [PubMed]
  34. A. Weigel and N. P. Ernsting, “Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. B 114(23), 7879–7893 (2010).
    [CrossRef] [PubMed]
  35. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16(4), 637–650 (1999).
    [CrossRef]
  36. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
    [CrossRef]
  37. K. Tominaga and K. Yoshihara, “Overtone vibrational dephasing of chloroform studied by higher-order nonlinear spectroscopy,” J. Phys. Chem. A 102(23), 4222–4228 (1998).
    [CrossRef]
  38. W. Zinth, A. Laubereau, and W. Kaiser, “Time resolved observation of resonant and non-resonant contributions to the nonlinear susceptibility χ(3),” Opt. Commun. 26(3), 457–462 (1978).
    [CrossRef]
  39. D. Meschede, Optics, Light and Lasers (Wiley-VCH, 2007).
  40. F. Moya, S. A. J. Druet, and J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent Raman anti-Stokes scattering,” Opt. Commun. 13(2), 169–174 (1975).
    [CrossRef]
  41. H. Graener and A. Laubereau, “High resolution Fourier transform Raman spectroscopy with ultrashort laser pulses,” Opt. Commun. 54(3), 141–146 (1985).
    [CrossRef]
  42. R. Leonhardt, W. Holzapfel, W. Zinth, and W. Kaiser, “Terahertz quantum beats in molecular liquids,” Chem. Phys. Lett. 133(5), 373–377 (1987).
    [CrossRef]
  43. B. N. Toleutaev, T. Tahara, and H. Hamaguchi, “Broadband (1000 cm−1) multiplex CARS spectroscopy: application to polarization sensitve and time-resolved measurements,” Appl. Phys. B 59(4), 369–375 (1994).
    [CrossRef]
  44. F. A. Miller and H. R. Golob, “The infrared and Raman spectra of cyclohexane and cyclohexane-d12,” Spectrochim. Acta [A] 20, 1517–1530 (1964).
  45. T. Köddermann, C. Wertz, A. Heintz, and R. Ludwig, “Ion-pair formation in the ionic liquid 1-ethyl-3-methylimidazolium bis(triflyl)imide as a function of temperature and concentration,” ChemPhysChem 7(9), 1944–1949 (2006).
    [CrossRef] [PubMed]
  46. R. G. Snyder, H. L. Strauss, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains,” J. Phys. Chem. 86(26), 5145–5150 (1982).
    [CrossRef]
  47. R. A. MacPhail, H. L. Strauss, R. G. Snyder, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 2. Long, all-trans chains,” J. Phys. Chem. 88(3), 334–341 (1984).
    [CrossRef]
  48. I. Hartl and W. Zinth, “A novel spectrometer system for the investigation of vibrational energy relaxation with sub-picosecond time resolution,” Opt. Commun. 160(1-3), 184–190 (1999).
    [CrossRef]
  49. J. C. Deàk, Y. Pang, T. D. Sechler, Z. Wang, and D. D. Dlott, “Vibrational energy transfer across a reverse micelle surfactant layer,” Science 306(5695), 473–476 (2004).
    [CrossRef] [PubMed]

2011 (2)

F. El-Diasty, “Coherent anti-Stokes Raman scattering: spectroscopy and microscopy,” Vib. Spectrosc. 55(1), 1–37 (2011).
[CrossRef]

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99(10), 101109 (2011).
[CrossRef]

2010 (3)

2009 (1)

Y. H. Wang, X. Du, X. He, and Y. Q. Yang, “Investigation of coherence transfer between ‘CH3’ and ‘CH2’ groups in ethanol with time resolved multiplex CARS technique,” Vib. Spectrosc. 50(2), 303–306 (2009).
[CrossRef]

2008 (2)

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008).
[CrossRef]

R. Lausten, O. Smirnova, B. J. Sussman, S. Gräfe, A. S. Mouritzen, and A. Stolow, “Time- and frequency-resolved coherent anti-Stokes Raman scattering spectroscopy with sub-25 fs laser pulses,” J. Chem. Phys. 128(24), 244310 (2008).
[CrossRef] [PubMed]

2007 (1)

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

2006 (3)

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[CrossRef] [PubMed]

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89(12), 121124 (2006).
[CrossRef]

T. Köddermann, C. Wertz, A. Heintz, and R. Ludwig, “Ion-pair formation in the ionic liquid 1-ethyl-3-methylimidazolium bis(triflyl)imide as a function of temperature and concentration,” ChemPhysChem 7(9), 1944–1949 (2006).
[CrossRef] [PubMed]

2005 (3)

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30(23), 3222–3224 (2005).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonanat broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

A. Volkmer, “Coherent vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D Appl. Phys. 38(5), R59–R81 (2005).
[CrossRef]

2004 (2)

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387(4-6), 436–441 (2004).
[CrossRef]

J. C. Deàk, Y. Pang, T. D. Sechler, Z. Wang, and D. D. Dlott, “Vibrational energy transfer across a reverse micelle surfactant layer,” Science 306(5695), 473–476 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (2)

M. Müller and J. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[CrossRef]

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[CrossRef]

2000 (1)

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[CrossRef]

1999 (4)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310(1-2), 65–72 (1999).
[CrossRef]

I. Hartl and W. Zinth, “A novel spectrometer system for the investigation of vibrational energy relaxation with sub-picosecond time resolution,” Opt. Commun. 160(1-3), 184–190 (1999).
[CrossRef]

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16(4), 637–650 (1999).
[CrossRef]

1998 (1)

K. Tominaga and K. Yoshihara, “Overtone vibrational dephasing of chloroform studied by higher-order nonlinear spectroscopy,” J. Phys. Chem. A 102(23), 4222–4228 (1998).
[CrossRef]

1997 (3)

1994 (1)

B. N. Toleutaev, T. Tahara, and H. Hamaguchi, “Broadband (1000 cm−1) multiplex CARS spectroscopy: application to polarization sensitve and time-resolved measurements,” Appl. Phys. B 59(4), 369–375 (1994).
[CrossRef]

1992 (1)

M. Fickenscher, H.-G. Purucker, and A. Laubereau, “Resonant vibrational dephasing investigated by high-precision femtosecond CARS,” Chem. Phys. Lett. 191(1-2), 182–188 (1992).
[CrossRef]

1988 (1)

W. Zinth, R. Leonhardt, W. Holzapfel, and W. Kaiser, “Fast dephasing processes studied with a femtosecond coherent Raman system,” IEEE J. Quantum Electron. 24(2), 455–459 (1988).
[CrossRef]

1987 (1)

R. Leonhardt, W. Holzapfel, W. Zinth, and W. Kaiser, “Terahertz quantum beats in molecular liquids,” Chem. Phys. Lett. 133(5), 373–377 (1987).
[CrossRef]

1985 (2)

1984 (2)

W. Zinth, M. C. Nuss, and W. Kaiser, “Line-narrowing transient Raman technique which resolves closely spaced hydrogen-bonded aggregates,” Phys. Rev. A 30(2), 1139–1141 (1984).
[CrossRef]

R. A. MacPhail, H. L. Strauss, R. G. Snyder, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 2. Long, all-trans chains,” J. Phys. Chem. 88(3), 334–341 (1984).
[CrossRef]

1982 (3)

R. G. Snyder, H. L. Strauss, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains,” J. Phys. Chem. 86(26), 5145–5150 (1982).
[CrossRef]

W. Zinth, M. C. Nuss, and W. Kaiser, “A new Raman technique of superior spectral resolution,” Chem. Phys. Lett. 88(3), 257–261 (1982).
[CrossRef]

M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7(8), 350–352 (1982).
[CrossRef] [PubMed]

1980 (2)

1978 (2)

W. Zinth, A. Laubereau, and W. Kaiser, “Time resolved observation of resonant and non-resonant contributions to the nonlinear susceptibility χ(3),” Opt. Commun. 26(3), 457–462 (1978).
[CrossRef]

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50(3), 607–665 (1978).
[CrossRef]

1975 (1)

F. Moya, S. A. J. Druet, and J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent Raman anti-Stokes scattering,” Opt. Commun. 13(2), 169–174 (1975).
[CrossRef]

1965 (1)

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137(3A), A801–A818 (1965).
[CrossRef]

1964 (1)

F. A. Miller and H. R. Golob, “The infrared and Raman spectra of cyclohexane and cyclohexane-d12,” Spectrochim. Acta [A] 20, 1517–1530 (1964).

Akhmanov, S. A.

Ariunbold, G. O.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Beutter, M.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[CrossRef]

Book, L. D.

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[CrossRef]

Bremer, M. T.

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99(10), 101109 (2011).
[CrossRef]

Brodeur, A.

Buckup, T.

Butcher, N.

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99(10), 101109 (2011).
[CrossRef]

Chakraborty, A.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[CrossRef] [PubMed]

Cheng, J.

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[CrossRef]

Chin, S. L.

Co, D. T.

Dantus, M.

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99(10), 101109 (2011).
[CrossRef]

Deàk, J. C.

J. C. Deàk, Y. Pang, T. D. Sechler, Z. Wang, and D. D. Dlott, “Vibrational energy transfer across a reverse micelle surfactant layer,” Science 306(5695), 473–476 (2004).
[CrossRef] [PubMed]

Dlott, D. D.

J. C. Deàk, Y. Pang, T. D. Sechler, Z. Wang, and D. D. Dlott, “Vibrational energy transfer across a reverse micelle surfactant layer,” Science 306(5695), 473–476 (2004).
[CrossRef] [PubMed]

Dogariu, A.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Druet, S. A. J.

F. Moya, S. A. J. Druet, and J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent Raman anti-Stokes scattering,” Opt. Commun. 13(2), 169–174 (1975).
[CrossRef]

Du, X.

Y. H. Wang, X. Du, X. He, and Y. Q. Yang, “Investigation of coherence transfer between ‘CH3’ and ‘CH2’ groups in ethanol with time resolved multiplex CARS technique,” Vib. Spectrosc. 50(2), 303–306 (2009).
[CrossRef]

Duncan, M. D.

Dutton, J. C.

Eckbreth, A. C.

El-Diasty, F.

F. El-Diasty, “Coherent anti-Stokes Raman scattering: spectroscopy and microscopy,” Vib. Spectrosc. 55(1), 1–37 (2011).
[CrossRef]

Elliger, C. A.

R. A. MacPhail, H. L. Strauss, R. G. Snyder, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 2. Long, all-trans chains,” J. Phys. Chem. 88(3), 334–341 (1984).
[CrossRef]

R. G. Snyder, H. L. Strauss, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains,” J. Phys. Chem. 86(26), 5145–5150 (1982).
[CrossRef]

Ernsting, N. P.

A. Weigel and N. P. Ernsting, “Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. B 114(23), 7879–7893 (2010).
[CrossRef] [PubMed]

Fickenscher, M.

M. Fickenscher, H.-G. Purucker, and A. Laubereau, “Resonant vibrational dephasing investigated by high-precision femtosecond CARS,” Chem. Phys. Lett. 191(1-2), 182–188 (1992).
[CrossRef]

Golob, H. R.

F. A. Miller and H. R. Golob, “The infrared and Raman spectra of cyclohexane and cyclohexane-d12,” Spectrochim. Acta [A] 20, 1517–1530 (1964).

Gord, J. R.

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonanat broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30(23), 3222–3224 (2005).
[CrossRef] [PubMed]

Graener, H.

H. Graener and A. Laubereau, “High resolution Fourier transform Raman spectroscopy with ultrashort laser pulses,” Opt. Commun. 54(3), 141–146 (1985).
[CrossRef]

Gräfe, S.

R. Lausten, O. Smirnova, B. J. Sussman, S. Gräfe, A. S. Mouritzen, and A. Stolow, “Time- and frequency-resolved coherent anti-Stokes Raman scattering spectroscopy with sub-25 fs laser pulses,” J. Chem. Phys. 128(24), 244310 (2008).
[CrossRef] [PubMed]

Hahn, J. W.

Hall, R. J.

Hamaguchi, H.

B. N. Toleutaev, T. Tahara, and H. Hamaguchi, “Broadband (1000 cm−1) multiplex CARS spectroscopy: application to polarization sensitve and time-resolved measurements,” Appl. Phys. B 59(4), 369–375 (1994).
[CrossRef]

Hartl, I.

I. Hartl and W. Zinth, “A novel spectrometer system for the investigation of vibrational energy relaxation with sub-picosecond time resolution,” Opt. Commun. 160(1-3), 184–190 (1999).
[CrossRef]

He, X.

Y. H. Wang, X. Du, X. He, and Y. Q. Yang, “Investigation of coherence transfer between ‘CH3’ and ‘CH2’ groups in ethanol with time resolved multiplex CARS technique,” Vib. Spectrosc. 50(2), 303–306 (2009).
[CrossRef]

Heintz, A.

T. Köddermann, C. Wertz, A. Heintz, and R. Ludwig, “Ion-pair formation in the ionic liquid 1-ethyl-3-methylimidazolium bis(triflyl)imide as a function of temperature and concentration,” ChemPhysChem 7(9), 1944–1949 (2006).
[CrossRef] [PubMed]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Holzapfel, W.

W. Zinth, R. Leonhardt, W. Holzapfel, and W. Kaiser, “Fast dephasing processes studied with a femtosecond coherent Raman system,” IEEE J. Quantum Electron. 24(2), 455–459 (1988).
[CrossRef]

R. Leonhardt, W. Holzapfel, W. Zinth, and W. Kaiser, “Terahertz quantum beats in molecular liquids,” Chem. Phys. Lett. 133(5), 373–377 (1987).
[CrossRef]

Huang, Y.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Johnson, J. C.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387(4-6), 436–441 (2004).
[CrossRef]

Kaiser, W.

W. Zinth, R. Leonhardt, W. Holzapfel, and W. Kaiser, “Fast dephasing processes studied with a femtosecond coherent Raman system,” IEEE J. Quantum Electron. 24(2), 455–459 (1988).
[CrossRef]

R. Leonhardt, W. Holzapfel, W. Zinth, and W. Kaiser, “Terahertz quantum beats in molecular liquids,” Chem. Phys. Lett. 133(5), 373–377 (1987).
[CrossRef]

W. Zinth, M. C. Nuss, and W. Kaiser, “Line-narrowing transient Raman technique which resolves closely spaced hydrogen-bonded aggregates,” Phys. Rev. A 30(2), 1139–1141 (1984).
[CrossRef]

W. Zinth, M. C. Nuss, and W. Kaiser, “A new Raman technique of superior spectral resolution,” Chem. Phys. Lett. 88(3), 257–261 (1982).
[CrossRef]

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50(3), 607–665 (1978).
[CrossRef]

W. Zinth, A. Laubereau, and W. Kaiser, “Time resolved observation of resonant and non-resonant contributions to the nonlinear susceptibility χ(3),” Opt. Commun. 26(3), 457–462 (1978).
[CrossRef]

Kamga, F. M.

Kiefer, W.

M. Schmitt, G. Knopp, A. Materny, and W. Kiefer, “Femtosecond time-resolved coherent anti-Stokes Raman scattering for the simultaneous study of ultrafast ground and excited state dynamics: iodine vapour,” Chem. Phys. Lett. 270(1-2), 9–15 (1997).
[CrossRef]

Kinnius, P. J.

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008).
[CrossRef]

Knopp, G.

M. Schmitt, G. Knopp, A. Materny, and W. Kiefer, “Femtosecond time-resolved coherent anti-Stokes Raman scattering for the simultaneous study of ultrafast ground and excited state dynamics: iodine vapour,” Chem. Phys. Lett. 270(1-2), 9–15 (1997).
[CrossRef]

Knutsen, K. P.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387(4-6), 436–441 (2004).
[CrossRef]

Köddermann, T.

T. Köddermann, C. Wertz, A. Heintz, and R. Ludwig, “Ion-pair formation in the ionic liquid 1-ethyl-3-methylimidazolium bis(triflyl)imide as a function of temperature and concentration,” ChemPhysChem 7(9), 1944–1949 (2006).
[CrossRef] [PubMed]

Kompa, K.-L.

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310(1-2), 65–72 (1999).
[CrossRef]

Koroteev, N. I.

Kuehner, J. P.

Lang, T.

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310(1-2), 65–72 (1999).
[CrossRef]

Laubereau, A.

M. Fickenscher, H.-G. Purucker, and A. Laubereau, “Resonant vibrational dephasing investigated by high-precision femtosecond CARS,” Chem. Phys. Lett. 191(1-2), 182–188 (1992).
[CrossRef]

H. Graener and A. Laubereau, “High resolution Fourier transform Raman spectroscopy with ultrashort laser pulses,” Opt. Commun. 54(3), 141–146 (1985).
[CrossRef]

W. Zinth, A. Laubereau, and W. Kaiser, “Time resolved observation of resonant and non-resonant contributions to the nonlinear susceptibility χ(3),” Opt. Commun. 26(3), 457–462 (1978).
[CrossRef]

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50(3), 607–665 (1978).
[CrossRef]

Lausten, R.

R. Lausten, O. Smirnova, B. J. Sussman, S. Gräfe, A. S. Mouritzen, and A. Stolow, “Time- and frequency-resolved coherent anti-Stokes Raman scattering spectroscopy with sub-25 fs laser pulses,” J. Chem. Phys. 128(24), 244310 (2008).
[CrossRef] [PubMed]

Leonhardt, R.

W. Zinth, R. Leonhardt, W. Holzapfel, and W. Kaiser, “Fast dephasing processes studied with a femtosecond coherent Raman system,” IEEE J. Quantum Electron. 24(2), 455–459 (1988).
[CrossRef]

R. Leonhardt, W. Holzapfel, W. Zinth, and W. Kaiser, “Terahertz quantum beats in molecular liquids,” Chem. Phys. Lett. 133(5), 373–377 (1987).
[CrossRef]

Lochbrunner, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[CrossRef]

Lockard, J. V.

Lozovoy, V. V.

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99(10), 101109 (2011).
[CrossRef]

Lucht, R. P.

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008).
[CrossRef]

J. P. Kuehner, M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “High-resolution broadband N2 coherent anti-Stokes Raman spectroscopy: comparison of measurements for conventional and modeless broadband dye lasers,” Appl. Opt. 42(33), 6757–6767 (2003).
[CrossRef] [PubMed]

Ludwig, R.

T. Köddermann, C. Wertz, A. Heintz, and R. Ludwig, “Ion-pair formation in the ionic liquid 1-ethyl-3-methylimidazolium bis(triflyl)imide as a function of temperature and concentration,” ChemPhysChem 7(9), 1944–1949 (2006).
[CrossRef] [PubMed]

MacPhail, R. A.

R. A. MacPhail, H. L. Strauss, R. G. Snyder, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 2. Long, all-trans chains,” J. Phys. Chem. 88(3), 334–341 (1984).
[CrossRef]

Magnitskii, S. A.

Maker, P. D.

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137(3A), A801–A818 (1965).
[CrossRef]

Manuccia, T. J.

Materny, A.

M. Schmitt, G. Knopp, A. Materny, and W. Kiefer, “Femtosecond time-resolved coherent anti-Stokes Raman scattering for the simultaneous study of ultrafast ground and excited state dynamics: iodine vapour,” Chem. Phys. Lett. 270(1-2), 9–15 (1997).
[CrossRef]

Mathies, R. A.

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89(12), 121124 (2006).
[CrossRef]

McCamant, D. W.

Meyer, T. R.

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonanat broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30(23), 3222–3224 (2005).
[CrossRef] [PubMed]

Miller, A. E.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387(4-6), 436–441 (2004).
[CrossRef]

Miller, F. A.

F. A. Miller and H. R. Golob, “The infrared and Raman spectra of cyclohexane and cyclohexane-d12,” Spectrochim. Acta [A] 20, 1517–1530 (1964).

Morozov, V. B.

Motzkus, M.

Mouritzen, A. S.

R. Lausten, O. Smirnova, B. J. Sussman, S. Gräfe, A. S. Mouritzen, and A. Stolow, “Time- and frequency-resolved coherent anti-Stokes Raman scattering spectroscopy with sub-25 fs laser pulses,” J. Chem. Phys. 128(24), 244310 (2008).
[CrossRef] [PubMed]

Moya, F.

F. Moya, S. A. J. Druet, and J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent Raman anti-Stokes scattering,” Opt. Commun. 13(2), 169–174 (1975).
[CrossRef]

Müller, M.

M. Müller and J. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[CrossRef]

Murawski, R. K.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Nuss, M. C.

W. Zinth, M. C. Nuss, and W. Kaiser, “Line-narrowing transient Raman technique which resolves closely spaced hydrogen-bonded aggregates,” Phys. Rev. A 30(2), 1139–1141 (1984).
[CrossRef]

W. Zinth, M. C. Nuss, and W. Kaiser, “A new Raman technique of superior spectral resolution,” Chem. Phys. Lett. 88(3), 257–261 (1982).
[CrossRef]

Pang, Y.

J. C. Deàk, Y. Pang, T. D. Sechler, Z. Wang, and D. D. Dlott, “Vibrational energy transfer across a reverse micelle surfactant layer,” Science 306(5695), 473–476 (2004).
[CrossRef] [PubMed]

Park, C. W.

Park, S. N.

Pestov, D.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Petersen, P. B.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387(4-6), 436–441 (2004).
[CrossRef]

Piel, J.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[CrossRef]

T. Wilhelm, J. Piel, and E. Riedle, “Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22(19), 1494–1496 (1997).
[CrossRef] [PubMed]

Pohling, C.

Prince, B. D.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[CrossRef] [PubMed]

Prince, B. M.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[CrossRef] [PubMed]

Purucker, H.-G.

M. Fickenscher, H.-G. Purucker, and A. Laubereau, “Resonant vibrational dephasing investigated by high-precision femtosecond CARS,” Chem. Phys. Lett. 191(1-2), 182–188 (1992).
[CrossRef]

Rehbinder, J.

Reintjes, J.

Riedle, E.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[CrossRef]

T. Wilhelm, J. Piel, and E. Riedle, “Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22(19), 1494–1496 (1997).
[CrossRef] [PubMed]

Rostovtsev, Y. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Roy, S.

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonanat broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30(23), 3222–3224 (2005).
[CrossRef] [PubMed]

Sautenkov, V. A.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Saykally, R. J.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387(4-6), 436–441 (2004).
[CrossRef]

Sceats, M. G.

Schenkl, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[CrossRef]

Schins, J.

M. Müller and J. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[CrossRef]

Schmitt, M.

M. Schmitt, G. Knopp, A. Materny, and W. Kiefer, “Femtosecond time-resolved coherent anti-Stokes Raman scattering for the simultaneous study of ultrafast ground and excited state dynamics: iodine vapour,” Chem. Phys. Lett. 270(1-2), 9–15 (1997).
[CrossRef]

Scully, M. O.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Sechler, T. D.

J. C. Deàk, Y. Pang, T. D. Sechler, Z. Wang, and D. D. Dlott, “Vibrational energy transfer across a reverse micelle surfactant layer,” Science 306(5695), 473–476 (2004).
[CrossRef] [PubMed]

Shim, S.

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89(12), 121124 (2006).
[CrossRef]

Shirley, J. A.

Smirnova, O.

R. Lausten, O. Smirnova, B. J. Sussman, S. Gräfe, A. S. Mouritzen, and A. Stolow, “Time- and frequency-resolved coherent anti-Stokes Raman scattering spectroscopy with sub-25 fs laser pulses,” J. Chem. Phys. 128(24), 244310 (2008).
[CrossRef] [PubMed]

Snyder, R. G.

R. A. MacPhail, H. L. Strauss, R. G. Snyder, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 2. Long, all-trans chains,” J. Phys. Chem. 88(3), 334–341 (1984).
[CrossRef]

R. G. Snyder, H. L. Strauss, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains,” J. Phys. Chem. 86(26), 5145–5150 (1982).
[CrossRef]

Sokolov, A. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Spörlein, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[CrossRef]

Stauffer, H. U.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[CrossRef] [PubMed]

Stolow, A.

R. Lausten, O. Smirnova, B. J. Sussman, S. Gräfe, A. S. Mouritzen, and A. Stolow, “Time- and frequency-resolved coherent anti-Stokes Raman scattering spectroscopy with sub-25 fs laser pulses,” J. Chem. Phys. 128(24), 244310 (2008).
[CrossRef] [PubMed]

Strauss, H. L.

R. A. MacPhail, H. L. Strauss, R. G. Snyder, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 2. Long, all-trans chains,” J. Phys. Chem. 88(3), 334–341 (1984).
[CrossRef]

R. G. Snyder, H. L. Strauss, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains,” J. Phys. Chem. 86(26), 5145–5150 (1982).
[CrossRef]

Sussman, B. J.

R. Lausten, O. Smirnova, B. J. Sussman, S. Gräfe, A. S. Mouritzen, and A. Stolow, “Time- and frequency-resolved coherent anti-Stokes Raman scattering spectroscopy with sub-25 fs laser pulses,” J. Chem. Phys. 128(24), 244310 (2008).
[CrossRef] [PubMed]

Tahara, T.

B. N. Toleutaev, T. Tahara, and H. Hamaguchi, “Broadband (1000 cm−1) multiplex CARS spectroscopy: application to polarization sensitve and time-resolved measurements,” Appl. Phys. B 59(4), 369–375 (1994).
[CrossRef]

Taran, J. P. E.

F. Moya, S. A. J. Druet, and J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent Raman anti-Stokes scattering,” Opt. Commun. 13(2), 169–174 (1975).
[CrossRef]

Tarasevich, A. P.

Terhune, R. W.

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137(3A), A801–A818 (1965).
[CrossRef]

Toleutaev, B. N.

B. N. Toleutaev, T. Tahara, and H. Hamaguchi, “Broadband (1000 cm−1) multiplex CARS spectroscopy: application to polarization sensitve and time-resolved measurements,” Appl. Phys. B 59(4), 369–375 (1994).
[CrossRef]

Tominaga, K.

K. Tominaga and K. Yoshihara, “Overtone vibrational dephasing of chloroform studied by higher-order nonlinear spectroscopy,” J. Phys. Chem. A 102(23), 4222–4228 (1998).
[CrossRef]

Tunkin, V. G.

Volkmer, A.

A. Volkmer, “Coherent vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D Appl. Phys. 38(5), R59–R81 (2005).
[CrossRef]

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[CrossRef]

Wang, X.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Wang, Y. H.

Y. H. Wang, X. Du, X. He, and Y. Q. Yang, “Investigation of coherence transfer between ‘CH3’ and ‘CH2’ groups in ethanol with time resolved multiplex CARS technique,” Vib. Spectrosc. 50(2), 303–306 (2009).
[CrossRef]

Wang, Z.

J. C. Deàk, Y. Pang, T. D. Sechler, Z. Wang, and D. D. Dlott, “Vibrational energy transfer across a reverse micelle surfactant layer,” Science 306(5695), 473–476 (2004).
[CrossRef] [PubMed]

Wasielewski, M. R.

Weigel, A.

A. Weigel and N. P. Ernsting, “Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. B 114(23), 7879–7893 (2010).
[CrossRef] [PubMed]

Wertz, C.

T. Köddermann, C. Wertz, A. Heintz, and R. Ludwig, “Ion-pair formation in the ionic liquid 1-ethyl-3-methylimidazolium bis(triflyl)imide as a function of temperature and concentration,” ChemPhysChem 7(9), 1944–1949 (2006).
[CrossRef] [PubMed]

Wilhelm, T.

Woodmansee, M. A.

Wrzesinski, P. J.

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99(10), 101109 (2011).
[CrossRef]

Xie, X. S.

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Yang, Y. Q.

Y. H. Wang, X. Du, X. He, and Y. Q. Yang, “Investigation of coherence transfer between ‘CH3’ and ‘CH2’ groups in ethanol with time resolved multiplex CARS technique,” Vib. Spectrosc. 50(2), 303–306 (2009).
[CrossRef]

Yoshihara, K.

K. Tominaga and K. Yoshihara, “Overtone vibrational dephasing of chloroform studied by higher-order nonlinear spectroscopy,” J. Phys. Chem. A 102(23), 4222–4228 (1998).
[CrossRef]

Zhi, M.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Zinth, W.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[CrossRef]

I. Hartl and W. Zinth, “A novel spectrometer system for the investigation of vibrational energy relaxation with sub-picosecond time resolution,” Opt. Commun. 160(1-3), 184–190 (1999).
[CrossRef]

W. Zinth, R. Leonhardt, W. Holzapfel, and W. Kaiser, “Fast dephasing processes studied with a femtosecond coherent Raman system,” IEEE J. Quantum Electron. 24(2), 455–459 (1988).
[CrossRef]

R. Leonhardt, W. Holzapfel, W. Zinth, and W. Kaiser, “Terahertz quantum beats in molecular liquids,” Chem. Phys. Lett. 133(5), 373–377 (1987).
[CrossRef]

W. Zinth, M. C. Nuss, and W. Kaiser, “Line-narrowing transient Raman technique which resolves closely spaced hydrogen-bonded aggregates,” Phys. Rev. A 30(2), 1139–1141 (1984).
[CrossRef]

W. Zinth, M. C. Nuss, and W. Kaiser, “A new Raman technique of superior spectral resolution,” Chem. Phys. Lett. 88(3), 257–261 (1982).
[CrossRef]

W. Zinth, A. Laubereau, and W. Kaiser, “Time resolved observation of resonant and non-resonant contributions to the nonlinear susceptibility χ(3),” Opt. Commun. 26(3), 457–462 (1978).
[CrossRef]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (2)

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[CrossRef]

B. N. Toleutaev, T. Tahara, and H. Hamaguchi, “Broadband (1000 cm−1) multiplex CARS spectroscopy: application to polarization sensitve and time-resolved measurements,” Appl. Phys. B 59(4), 369–375 (1994).
[CrossRef]

Appl. Phys. Lett. (3)

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89(12), 121124 (2006).
[CrossRef]

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99(10), 101109 (2011).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonanat broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

Chem. Phys. Lett. (6)

M. Fickenscher, H.-G. Purucker, and A. Laubereau, “Resonant vibrational dephasing investigated by high-precision femtosecond CARS,” Chem. Phys. Lett. 191(1-2), 182–188 (1992).
[CrossRef]

M. Schmitt, G. Knopp, A. Materny, and W. Kiefer, “Femtosecond time-resolved coherent anti-Stokes Raman scattering for the simultaneous study of ultrafast ground and excited state dynamics: iodine vapour,” Chem. Phys. Lett. 270(1-2), 9–15 (1997).
[CrossRef]

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310(1-2), 65–72 (1999).
[CrossRef]

W. Zinth, M. C. Nuss, and W. Kaiser, “A new Raman technique of superior spectral resolution,” Chem. Phys. Lett. 88(3), 257–261 (1982).
[CrossRef]

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387(4-6), 436–441 (2004).
[CrossRef]

R. Leonhardt, W. Holzapfel, W. Zinth, and W. Kaiser, “Terahertz quantum beats in molecular liquids,” Chem. Phys. Lett. 133(5), 373–377 (1987).
[CrossRef]

ChemPhysChem (1)

T. Köddermann, C. Wertz, A. Heintz, and R. Ludwig, “Ion-pair formation in the ionic liquid 1-ethyl-3-methylimidazolium bis(triflyl)imide as a function of temperature and concentration,” ChemPhysChem 7(9), 1944–1949 (2006).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

W. Zinth, R. Leonhardt, W. Holzapfel, and W. Kaiser, “Fast dephasing processes studied with a femtosecond coherent Raman system,” IEEE J. Quantum Electron. 24(2), 455–459 (1988).
[CrossRef]

J. Chem. Phys. (2)

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[CrossRef] [PubMed]

R. Lausten, O. Smirnova, B. J. Sussman, S. Gräfe, A. S. Mouritzen, and A. Stolow, “Time- and frequency-resolved coherent anti-Stokes Raman scattering spectroscopy with sub-25 fs laser pulses,” J. Chem. Phys. 128(24), 244310 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (2)

R. G. Snyder, H. L. Strauss, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains,” J. Phys. Chem. 86(26), 5145–5150 (1982).
[CrossRef]

R. A. MacPhail, H. L. Strauss, R. G. Snyder, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 2. Long, all-trans chains,” J. Phys. Chem. 88(3), 334–341 (1984).
[CrossRef]

J. Phys. Chem. A (1)

K. Tominaga and K. Yoshihara, “Overtone vibrational dephasing of chloroform studied by higher-order nonlinear spectroscopy,” J. Phys. Chem. A 102(23), 4222–4228 (1998).
[CrossRef]

J. Phys. Chem. B (3)

A. Weigel and N. P. Ernsting, “Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. B 114(23), 7879–7893 (2010).
[CrossRef] [PubMed]

M. Müller and J. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[CrossRef]

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[CrossRef]

J. Phys. D Appl. Phys. (1)

A. Volkmer, “Coherent vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D Appl. Phys. 38(5), R59–R81 (2005).
[CrossRef]

Opt. Commun. (5)

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008).
[CrossRef]

W. Zinth, A. Laubereau, and W. Kaiser, “Time resolved observation of resonant and non-resonant contributions to the nonlinear susceptibility χ(3),” Opt. Commun. 26(3), 457–462 (1978).
[CrossRef]

I. Hartl and W. Zinth, “A novel spectrometer system for the investigation of vibrational energy relaxation with sub-picosecond time resolution,” Opt. Commun. 160(1-3), 184–190 (1999).
[CrossRef]

F. Moya, S. A. J. Druet, and J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent Raman anti-Stokes scattering,” Opt. Commun. 13(2), 169–174 (1975).
[CrossRef]

H. Graener and A. Laubereau, “High resolution Fourier transform Raman spectroscopy with ultrashort laser pulses,” Opt. Commun. 54(3), 141–146 (1985).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. (1)

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137(3A), A801–A818 (1965).
[CrossRef]

Phys. Rev. A (1)

W. Zinth, M. C. Nuss, and W. Kaiser, “Line-narrowing transient Raman technique which resolves closely spaced hydrogen-bonded aggregates,” Phys. Rev. A 30(2), 1139–1141 (1984).
[CrossRef]

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Rev. Mod. Phys. (1)

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50(3), 607–665 (1978).
[CrossRef]

Science (2)

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

J. C. Deàk, Y. Pang, T. D. Sechler, Z. Wang, and D. D. Dlott, “Vibrational energy transfer across a reverse micelle surfactant layer,” Science 306(5695), 473–476 (2004).
[CrossRef] [PubMed]

Spectrochim. Acta [A] (1)

F. A. Miller and H. R. Golob, “The infrared and Raman spectra of cyclohexane and cyclohexane-d12,” Spectrochim. Acta [A] 20, 1517–1530 (1964).

Vib. Spectrosc. (2)

F. El-Diasty, “Coherent anti-Stokes Raman scattering: spectroscopy and microscopy,” Vib. Spectrosc. 55(1), 1–37 (2011).
[CrossRef]

Y. H. Wang, X. Du, X. He, and Y. Q. Yang, “Investigation of coherence transfer between ‘CH3’ and ‘CH2’ groups in ethanol with time resolved multiplex CARS technique,” Vib. Spectrosc. 50(2), 303–306 (2009).
[CrossRef]

Other (2)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).

D. Meschede, Optics, Light and Lasers (Wiley-VCH, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Sketch of the multiplex CARS setup. Raman pump and probe beam consist of narrowband pulses. They are overlapped in the sample with a broadband femtosecond Stokes pulse using a folded BOXCARS geometry.

Fig. 2
Fig. 2

Setup of the narrowband NOPA. The output of a modified femtosecond NOPA is spectrally filtered by a monochromator and subsequently amplified in a second parametric stage. For details see text.

Fig. 3
Fig. 3

(a) Normalized spectra of the narrowband NOPA pulses for the accessible tuning range. (b) Typical pulse energies. The broken line is a guide to the eye.

Fig. 4
Fig. 4

(a) Time resolved CARS spectra of CHCl3. (b) Time trace at 3019.5 cm−1 in comparison with a modeled curve (red). The model consists of a nonresonant (black solid line), a resonant (blue dash dotted line) and an additional contribution due to the exchange of the role of pump and probe pulses (dashed line).

Fig. 5
Fig. 5

(a) Selected CARS spectra of cyclohexane at different delay times. The spectra are normalized with respect to the mono exponentially decaying signal at 2857 cm−1. (b) Time traces of the signal at 2857 cm−1 and at 2930 cm−1 where a beating due to the overlap of two modes appears. The beating period T = 2.27 ps is highlighted.

Fig. 6
Fig. 6

Raman and CARS spectrum of the CH stretch vibrations of the alkyl chain of the cation in the ionic liquid [C2mim][NTf2].

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P ˜ AS ( t D ,ω)= j P ˜ R,j ( t D ,ω)+ P ˜ NR ( t D ,ω) =FT( j n j α q j q j E pr ( t D ,t)+ χ NR ( 3 ) E pu ( t ) E St * ( t ) E pr ( t D ,t) ).
q = 1 2 iQexp( t/ T 2 )exp( i ω q t )+c.c.
P ˜ R ( t D ,ω)=iA 0 dtexp( t / T 2 ) E pr (t, t D )exp[ i( ω q + ω pr ω )t ].

Metrics