Abstract

We describe a technique for experimentally determining the spatial-frequency modulation transfer function for near-field super-resolution imaging systems and present such a modulation transfer function for a 20|40|20 nm poly(vinyl alcohol)~(PVA)|Silver|PVA superlens exposed to 365 nm wavelength (i-line) radiation through a 50-nm thick tungsten mask. An extensive spectral characterization is achieved from only two exposures, with transmission coefficients determined for spatial frequencies as high as 13 µm−1, corresponding to λ / 4.75. The resulting transfer function is in good agreement with analytical models that incorporate the effects of mask-superlens interactions.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25(4), 911–918 (2008).
    [CrossRef] [PubMed]
  3. D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer Silver superlenses for near-field optical lithography,” Physica B 394(2), 197–202 (2007).
    [CrossRef]
  4. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
    [CrossRef]
  5. K. Lee, Y. Jung, and K. Kim, “Near-field phase correction for superresolution enhancement,” Phys. Rev. B 80(3), 033109 (2009).
    [CrossRef]
  6. R. Kotyński, “Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers,” Opto-Electron. Rev. 18(4), 366–375 (2010).
    [CrossRef]
  7. C. P. Moore, R. J. Blaikie, and M. D. Arnold, “An improved transfer-matrix model for optical superlenses,” Opt. Express 17(16), 14260–14269 (2009).
    [CrossRef] [PubMed]
  8. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
    [CrossRef] [PubMed]
  9. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  10. P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
    [CrossRef]
  11. J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71(26), 3773–3775 (1997).
    [CrossRef]
  12. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
    [CrossRef]
  13. T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mitzutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a-Si mask,” Appl. Phys. Lett. 89(3), 033113 (2006).
    [CrossRef]
  14. C. P. Moore, R. J. Blaikie, and M. D. Arnold, “Improved analytical models for single- and multi-layer Silver superlenses,” MRS Proc. 1182, 1182–EE11–02 (2009).
    [CrossRef]
  15. C. P. Moore and R. J. Blaikie, “Flexible poly(dimethyl siloxane) support layers for the evanescent characterization of near-field lithography systems,” J. Vac. Sci. Technol. B 29(6), 06FH02 (2011).
    [CrossRef]
  16. D. O. S. Melville and R. J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography,” J. Opt. Soc. Am. B 23(3), 461–467 (2006).
    [CrossRef]
  17. C. P. Moore, Optical superlenses: quality and fidelity in Silver-dielectric near-field imaging systems, PhD. Thesis (University of Canterbury, New Zealand, 2012), Chap. 7.
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  19. J. C. Seferis, “Refractive indices of polymers,” in Polymer Handbook, J. Brandrup and E. H. Immergut, eds. (John Wiley & Sons, New York, 1989).
  20. D. R. Lide, The CRC Handbook of Chemistry and Physics (CRC Press, 2008).

2011 (1)

C. P. Moore and R. J. Blaikie, “Flexible poly(dimethyl siloxane) support layers for the evanescent characterization of near-field lithography systems,” J. Vac. Sci. Technol. B 29(6), 06FH02 (2011).
[CrossRef]

2010 (2)

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

R. Kotyński, “Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers,” Opto-Electron. Rev. 18(4), 366–375 (2010).
[CrossRef]

2009 (3)

C. P. Moore, R. J. Blaikie, and M. D. Arnold, “An improved transfer-matrix model for optical superlenses,” Opt. Express 17(16), 14260–14269 (2009).
[CrossRef] [PubMed]

K. Lee, Y. Jung, and K. Kim, “Near-field phase correction for superresolution enhancement,” Phys. Rev. B 80(3), 033109 (2009).
[CrossRef]

C. P. Moore, R. J. Blaikie, and M. D. Arnold, “Improved analytical models for single- and multi-layer Silver superlenses,” MRS Proc. 1182, 1182–EE11–02 (2009).
[CrossRef]

2008 (1)

2007 (1)

D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer Silver superlenses for near-field optical lithography,” Physica B 394(2), 197–202 (2007).
[CrossRef]

2006 (2)

D. O. S. Melville and R. J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography,” J. Opt. Soc. Am. B 23(3), 461–467 (2006).
[CrossRef]

T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mitzutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a-Si mask,” Appl. Phys. Lett. 89(3), 033113 (2006).
[CrossRef]

2005 (2)

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

2003 (1)

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999 (1)

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[CrossRef]

1997 (1)

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71(26), 3773–3775 (1997).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Aizenberg, J.

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71(26), 3773–3775 (1997).
[CrossRef]

Alkaisi, M. M.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[CrossRef]

Arnold, M. D.

Blaikie, R. J.

C. P. Moore and R. J. Blaikie, “Flexible poly(dimethyl siloxane) support layers for the evanescent characterization of near-field lithography systems,” J. Vac. Sci. Technol. B 29(6), 06FH02 (2011).
[CrossRef]

C. P. Moore, R. J. Blaikie, and M. D. Arnold, “Improved analytical models for single- and multi-layer Silver superlenses,” MRS Proc. 1182, 1182–EE11–02 (2009).
[CrossRef]

C. P. Moore, R. J. Blaikie, and M. D. Arnold, “An improved transfer-matrix model for optical superlenses,” Opt. Express 17(16), 14260–14269 (2009).
[CrossRef] [PubMed]

C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25(4), 911–918 (2008).
[CrossRef] [PubMed]

D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer Silver superlenses for near-field optical lithography,” Physica B 394(2), 197–202 (2007).
[CrossRef]

D. O. S. Melville and R. J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography,” J. Opt. Soc. Am. B 23(3), 461–467 (2006).
[CrossRef]

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
[CrossRef] [PubMed]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[CrossRef]

Bones, P. J.

Chaturvedi, P.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

Cheung, R.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Cumming, D. R. S.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Fang, N. X.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

Inao, Y.

T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mitzutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a-Si mask,” Appl. Phys. Lett. 89(3), 033113 (2006).
[CrossRef]

Islam, M. S.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

Ito, T.

T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mitzutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a-Si mask,” Appl. Phys. Lett. 89(3), 033113 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Jung, Y.

K. Lee, Y. Jung, and K. Kim, “Near-field phase correction for superresolution enhancement,” Phys. Rev. B 80(3), 033109 (2009).
[CrossRef]

Kim, K.

K. Lee, Y. Jung, and K. Kim, “Near-field phase correction for superresolution enhancement,” Phys. Rev. B 80(3), 033109 (2009).
[CrossRef]

Kotynski, R.

R. Kotyński, “Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers,” Opto-Electron. Rev. 18(4), 366–375 (2010).
[CrossRef]

Kuroda, R.

T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mitzutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a-Si mask,” Appl. Phys. Lett. 89(3), 033113 (2006).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Lee, K.

K. Lee, Y. Jung, and K. Kim, “Near-field phase correction for superresolution enhancement,” Phys. Rev. B 80(3), 033109 (2009).
[CrossRef]

Logeeswaran, V. J.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

McNab, S. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[CrossRef]

Melville, D. O. S.

Mitzutani, N.

T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mitzutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a-Si mask,” Appl. Phys. Lett. 89(3), 033113 (2006).
[CrossRef]

Moore, C. P.

C. P. Moore and R. J. Blaikie, “Flexible poly(dimethyl siloxane) support layers for the evanescent characterization of near-field lithography systems,” J. Vac. Sci. Technol. B 29(6), 06FH02 (2011).
[CrossRef]

C. P. Moore, R. J. Blaikie, and M. D. Arnold, “Improved analytical models for single- and multi-layer Silver superlenses,” MRS Proc. 1182, 1182–EE11–02 (2009).
[CrossRef]

C. P. Moore, R. J. Blaikie, and M. D. Arnold, “An improved transfer-matrix model for optical superlenses,” Opt. Express 17(16), 14260–14269 (2009).
[CrossRef] [PubMed]

C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25(4), 911–918 (2008).
[CrossRef] [PubMed]

Paul, K. E.

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71(26), 3773–3775 (1997).
[CrossRef]

Pendry, J. B.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Ramakrishna, S. A.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
[CrossRef]

Rogers, J. A.

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71(26), 3773–3775 (1997).
[CrossRef]

Rosenbluth, M.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
[CrossRef]

Schultz, S.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
[CrossRef]

Schurig, D.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
[CrossRef]

Smith, D. R.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Wang, S. Y.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

Whitesides, G. M.

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71(26), 3773–3775 (1997).
[CrossRef]

Williams, R. S.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

Wu, W.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

Yamada, T.

T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mitzutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a-Si mask,” Appl. Phys. Lett. 89(3), 033113 (2006).
[CrossRef]

Yamaguchi, T.

T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mitzutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a-Si mask,” Appl. Phys. Lett. 89(3), 033113 (2006).
[CrossRef]

Yu, Z.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
[CrossRef]

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71(26), 3773–3775 (1997).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[CrossRef]

T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mitzutani, and R. Kuroda, “Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a-Si mask,” Appl. Phys. Lett. 89(3), 033113 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

C. P. Moore and R. J. Blaikie, “Flexible poly(dimethyl siloxane) support layers for the evanescent characterization of near-field lithography systems,” J. Vac. Sci. Technol. B 29(6), 06FH02 (2011).
[CrossRef]

MRS Proc. (1)

C. P. Moore, R. J. Blaikie, and M. D. Arnold, “Improved analytical models for single- and multi-layer Silver superlenses,” MRS Proc. 1182, 1182–EE11–02 (2009).
[CrossRef]

Opt. Express (2)

Opto-Electron. Rev. (1)

R. Kotyński, “Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers,” Opto-Electron. Rev. 18(4), 366–375 (2010).
[CrossRef]

Phys. Rev. B (2)

K. Lee, Y. Jung, and K. Kim, “Near-field phase correction for superresolution enhancement,” Phys. Rev. B 80(3), 033109 (2009).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Physica B (1)

D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer Silver superlenses for near-field optical lithography,” Physica B 394(2), 197–202 (2007).
[CrossRef]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Other (3)

J. C. Seferis, “Refractive indices of polymers,” in Polymer Handbook, J. Brandrup and E. H. Immergut, eds. (John Wiley & Sons, New York, 1989).

D. R. Lide, The CRC Handbook of Chemistry and Physics (CRC Press, 2008).

C. P. Moore, Optical superlenses: quality and fidelity in Silver-dielectric near-field imaging systems, PhD. Thesis (University of Canterbury, New Zealand, 2012), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of experimental setup. (a) Lithography mask and photoresist stack with a superlens. (b) Lithography mask and photoresist stack without a superlens, used for control experiments.

Fig. 2
Fig. 2

AFM height scans of sample surfaces. (a) Photoresist exposed with a superlens. (b) Photoresist exposed without a superlens. (c) Tungsten on glass mask used to pattern photoresist. Color bar units are nm.

Fig. 3
Fig. 3

Average line profiles calculated from rotated, cropped and flattened versions of the height scans shown in Fig. 2. (a) Photoresist exposed with a superlens. (b) Photoresist exposed without a superlens. (c) Tungsten on glass mask used to pattern photoresist.

Fig. 4
Fig. 4

Normalized spatial frequency spectra of the average line profiles shown in Fig. 3. (a) Photoresist exposed with a superlens. (b) Photoresist exposed without a superlens. (c) Tungsten on glass mask used to pattern photoresist.

Fig. 5
Fig. 5

Measured (circle markers) and predicted (solid and dashed lines) transfer functions for a 20|40|20 nm PVA|Ag|PVA superlens in contact with a 50 nm thick tungsten mask. Measured coefficients are relative to the spectrum of the exposing mask (a) and the spectrum of a photoresist film exposed without a superlens (b). Predicted transfer functions are calculated using the TMM [26] (dashed line) and M-TMM [7, 14] (solid line) methods. Error bars indicate maximum deviation from nominal values.

Fig. 6
Fig. 6

Measured photoresist response function for Clariant AZ 1518 photoresist exposed by a 365 nm wavelength-filtered mercury-vapor lamp and developed in Clariant AZ 236 MIF developer diluted 4:3 with de-ionized water. Exposure dose was 75 mJ/cm2 at a wavelength of 365 nm. Development time was 15 s. Error bars indicate maximum deviation from nominal values.

Tables (1)

Tables Icon

Table 1 Electromagnetic Properties of Materials Used in Analytical Model

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H( n )= Ψ out ( n ) Ψ in ( n ) .

Metrics