Abstract

A dissipative soliton in an all-normal-dispersion actively mode-locked ytterbium-doped fiber laser is reported for the first time. Pulses with 10-ps duration and edge-to-edge bandwidth of 9 nm are generated, and then extra-cavity compressed down to 560 fs due to the large chirp. Widely wavelength tuning between 1031 and 1080 nm is achieved by adjusting the driving frequency only. Our simulation shows that the proposed laser operates in the dissipative soliton shaping regime.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [CrossRef] [PubMed]
  2. J. M. Soto-Crespo, N. Akhmediev, and G. Town, “Interrelation between various branches of stable solitons in dissipative systems-conjecture for stability criterion,” Opt. Commun. 199(1-4), 283–293 (2001).
    [CrossRef]
  3. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
    [CrossRef] [PubMed]
  4. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
    [CrossRef]
  5. K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34(5), 593–595 (2009).
    [CrossRef] [PubMed]
  6. G. T. Harvey and L. F. Mollenauer, “Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission,” Opt. Lett. 18(2), 107–109 (1993).
    [CrossRef] [PubMed]
  7. T. F. Carruthers and I. N. Duling, “10-GHz, 1.3-ps erbium fiber laser employing soliton pulse shortening,” Opt. Lett. 21(23), 1927–1929 (1996).
    [CrossRef] [PubMed]
  8. C. M. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
    [CrossRef]
  9. L. J. Kong, X. S. Xiao, and C. X. Yang, “Tunable all-normal-dispersion Yb-doped mode-locked fiber lasers,” Conference on Lasers and Electro-Optics (CLEO), JTuD70 (2009).
  10. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
    [CrossRef] [PubMed]
  11. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser: Analogy with the ststes of the matter,” Appl. Phys. B 99(1-2), 107–114 (2010).
    [CrossRef]
  12. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
    [CrossRef]
  13. M. A. Abdelalim, Y. Logvin, D. A. Khalil, and H. Anis, “Properties and stability limits of an optimized mode-locked Yb-doped femtosecond fiber laser,” Opt. Express 17(4), 2264–2279 (2009).
    [CrossRef] [PubMed]
  14. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
    [CrossRef]
  15. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
    [CrossRef]
  16. K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16(15), 11453–11458 (2008).
    [CrossRef] [PubMed]
  17. D. Mortag, D. Wandt, U. Morgner, D. Kracht, and J. Neumann, “Sub-80-fs pulses from an all-fiber-integrated dissipative-soliton laser at 1 µm,” Opt. Express 19(2), 546–551 (2011).
    [CrossRef] [PubMed]
  18. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
    [CrossRef] [PubMed]
  19. Z. X. Zhang and G. X. Dai, “All-normal-dispersion dissipative soliton ytterbium fiber laser without dispersion compensation and additional filter,” IEEE Photon. J. 3(6), 1023–1029 (2011).
    [CrossRef]
  20. S. L. Pan, X. F. Zhao, W. K. Yu, and C. Y. Lou, “Dispersion-tuned multiwavelength actively mode-locked fiber laser using a hybrid gain medium,” Opt. Laser Technol. 40(6), 854–857 (2008).
    [CrossRef]
  21. S. L. Pan and C. Y. Lou, “Multiwavelength pulse generation using an actively mode-locked erbium-doped fiber ring laser based on distributed dispersion cavity,” IEEE Photon. Technol. Lett. 18(4), 604–606 (2006).
    [CrossRef]

2011 (2)

Z. X. Zhang and G. X. Dai, “All-normal-dispersion dissipative soliton ytterbium fiber laser without dispersion compensation and additional filter,” IEEE Photon. J. 3(6), 1023–1029 (2011).
[CrossRef]

D. Mortag, D. Wandt, U. Morgner, D. Kracht, and J. Neumann, “Sub-80-fs pulses from an all-fiber-integrated dissipative-soliton laser at 1 µm,” Opt. Express 19(2), 546–551 (2011).
[CrossRef] [PubMed]

2010 (1)

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser: Analogy with the ststes of the matter,” Appl. Phys. B 99(1-2), 107–114 (2010).
[CrossRef]

2009 (2)

2008 (5)

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[CrossRef]

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
[CrossRef]

K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16(15), 11453–11458 (2008).
[CrossRef] [PubMed]

S. L. Pan, X. F. Zhao, W. K. Yu, and C. Y. Lou, “Dispersion-tuned multiwavelength actively mode-locked fiber laser using a hybrid gain medium,” Opt. Laser Technol. 40(6), 854–857 (2008).
[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

2007 (1)

2006 (3)

2004 (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

2001 (1)

J. M. Soto-Crespo, N. Akhmediev, and G. Town, “Interrelation between various branches of stable solitons in dissipative systems-conjecture for stability criterion,” Opt. Commun. 199(1-4), 283–293 (2001).
[CrossRef]

2000 (1)

C. M. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
[CrossRef]

1997 (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

1996 (1)

1993 (1)

Abdelalim, M. A.

Akhmediev, N.

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

J. M. Soto-Crespo, N. Akhmediev, and G. Town, “Interrelation between various branches of stable solitons in dissipative systems-conjecture for stability criterion,” Opt. Commun. 199(1-4), 283–293 (2001).
[CrossRef]

Amrani, F.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser: Analogy with the ststes of the matter,” Appl. Phys. B 99(1-2), 107–114 (2010).
[CrossRef]

Anis, H.

Buckley, J.

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

Carruthers, T. F.

Chong, A.

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

Dai, G. X.

Z. X. Zhang and G. X. Dai, “All-normal-dispersion dissipative soliton ytterbium fiber laser without dispersion compensation and additional filter,” IEEE Photon. J. 3(6), 1023–1029 (2011).
[CrossRef]

Duling, I. N.

Dutta, N. K.

C. M. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
[CrossRef]

Grelu, Ph.

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

Haboucha, A.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser: Analogy with the ststes of the matter,” Appl. Phys. B 99(1-2), 107–114 (2010).
[CrossRef]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

Harvey, G. T.

Ilday, F. Ö.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

Khalil, D. A.

Kieu, K.

Komarov, A.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser: Analogy with the ststes of the matter,” Appl. Phys. B 99(1-2), 107–114 (2010).
[CrossRef]

Kracht, D.

Leblond, H.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser: Analogy with the ststes of the matter,” Appl. Phys. B 99(1-2), 107–114 (2010).
[CrossRef]

Logvin, Y.

Lou, C. Y.

S. L. Pan, X. F. Zhao, W. K. Yu, and C. Y. Lou, “Dispersion-tuned multiwavelength actively mode-locked fiber laser using a hybrid gain medium,” Opt. Laser Technol. 40(6), 854–857 (2008).
[CrossRef]

S. L. Pan and C. Y. Lou, “Multiwavelength pulse generation using an actively mode-locked erbium-doped fiber ring laser based on distributed dispersion cavity,” IEEE Photon. Technol. Lett. 18(4), 604–606 (2006).
[CrossRef]

Mollenauer, L. F.

Morgner, U.

Mortag, D.

Neumann, J.

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

Pan, S. L.

S. L. Pan, X. F. Zhao, W. K. Yu, and C. Y. Lou, “Dispersion-tuned multiwavelength actively mode-locked fiber laser using a hybrid gain medium,” Opt. Laser Technol. 40(6), 854–857 (2008).
[CrossRef]

S. L. Pan and C. Y. Lou, “Multiwavelength pulse generation using an actively mode-locked erbium-doped fiber ring laser based on distributed dispersion cavity,” IEEE Photon. Technol. Lett. 18(4), 604–606 (2006).
[CrossRef]

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

Renninger, W.

Renninger, W. H.

Salhi, M.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser: Analogy with the ststes of the matter,” Appl. Phys. B 99(1-2), 107–114 (2010).
[CrossRef]

Sanchez, F.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser: Analogy with the ststes of the matter,” Appl. Phys. B 99(1-2), 107–114 (2010).
[CrossRef]

Soto-Crespo, J. M.

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

J. M. Soto-Crespo, N. Akhmediev, and G. Town, “Interrelation between various branches of stable solitons in dissipative systems-conjecture for stability criterion,” Opt. Commun. 199(1-4), 283–293 (2001).
[CrossRef]

Tang, D. Y.

Town, G.

J. M. Soto-Crespo, N. Akhmediev, and G. Town, “Interrelation between various branches of stable solitons in dissipative systems-conjecture for stability criterion,” Opt. Commun. 199(1-4), 283–293 (2001).
[CrossRef]

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

Wandt, D.

Wise, F.

Wise, F. W.

Wu, C. M.

C. M. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
[CrossRef]

Wu, J.

Yu, W. K.

S. L. Pan, X. F. Zhao, W. K. Yu, and C. Y. Lou, “Dispersion-tuned multiwavelength actively mode-locked fiber laser using a hybrid gain medium,” Opt. Laser Technol. 40(6), 854–857 (2008).
[CrossRef]

Zhang, Z. X.

Z. X. Zhang and G. X. Dai, “All-normal-dispersion dissipative soliton ytterbium fiber laser without dispersion compensation and additional filter,” IEEE Photon. J. 3(6), 1023–1029 (2011).
[CrossRef]

Zhao, L. M.

Zhao, X. F.

S. L. Pan, X. F. Zhao, W. K. Yu, and C. Y. Lou, “Dispersion-tuned multiwavelength actively mode-locked fiber laser using a hybrid gain medium,” Opt. Laser Technol. 40(6), 854–857 (2008).
[CrossRef]

Appl. Phys. B (1)

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser: Analogy with the ststes of the matter,” Appl. Phys. B 99(1-2), 107–114 (2010).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[CrossRef]

C. M. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
[CrossRef]

IEEE Photon. J. (1)

Z. X. Zhang and G. X. Dai, “All-normal-dispersion dissipative soliton ytterbium fiber laser without dispersion compensation and additional filter,” IEEE Photon. J. 3(6), 1023–1029 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. L. Pan and C. Y. Lou, “Multiwavelength pulse generation using an actively mode-locked erbium-doped fiber ring laser based on distributed dispersion cavity,” IEEE Photon. Technol. Lett. 18(4), 604–606 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J. M. Soto-Crespo, N. Akhmediev, and G. Town, “Interrelation between various branches of stable solitons in dissipative systems-conjecture for stability criterion,” Opt. Commun. 199(1-4), 283–293 (2001).
[CrossRef]

Opt. Express (4)

Opt. Laser Technol. (1)

S. L. Pan, X. F. Zhao, W. K. Yu, and C. Y. Lou, “Dispersion-tuned multiwavelength actively mode-locked fiber laser using a hybrid gain medium,” Opt. Laser Technol. 40(6), 854–857 (2008).
[CrossRef]

Opt. Lett. (5)

Phys. Lett. A (1)

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

Phys. Rev. A (1)

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

Other (1)

L. J. Kong, X. S. Xiao, and C. X. Yang, “Tunable all-normal-dispersion Yb-doped mode-locked fiber lasers,” Conference on Lasers and Electro-Optics (CLEO), JTuD70 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of the fiber laser cavity elements used for the proposed model. IM: intensity modulator.

Fig. 2
Fig. 2

Numerical simulation results. (a) Temporal intensity profile with linear chirp, inset: optical spectrum of the pulse. (b) Evolution of pulse width (blue) and spectral bandwidth (black) through the laser cavity.

Fig. 3
Fig. 3

Experimental setup of the proposed active mode locking.

Fig. 4
Fig. 4

(a) Autocorrelation trace of output pulse (black) and Gaussian fit (red, dashed curve). (b) 100-MHz-span RF spectrum. (c) Optical spectrum of the output pulse. (d) Autocorrelation function of the dechirped output pulses (black line), and the Fourier-limited autocorrelation function calculated by a fast Fourier transform of the optical spectrum are shown (red, dashed curve).

Fig. 5
Fig. 5

(a) Variation of the active dissipative soliton spectrum with pump power. Inset: the output power and bandwidth variations. (b) Spectrum shifting by tuning the modulation frequency, Inset: wavelength variation along with repetition rate tuning (the mean rate is 44.14 MHz).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δλ/δ f rep =1/χ f rep 2

Metrics