Abstract

We studied the in- and the out-coupling efficiencies of photons with a thin InGaAs slab covered by periodic gold nano-slit arrays, by measuring transmission and photoluminescence (PL) spectra. While the maximum in-coupled photons into the InGaAs slab waveguide were found at dip positions in transmission spectra, the mostly out-coupled photons were observed as peaks in PL spectra. For different periods of slit arrays and incident angles we discussed spectral positions of transmission dips and efficiency of the in-coupling influenced by the absorption coefficient of InGaAs. In PL spectra we measured overall enhanced PL intensities from the InGaAs slab covered by slit arrays compared to that of a bare InGaAs, where the peak positions are determined by the period of slit arrays as well. Our findings are important for designing semiconductors both as an optically passive waveguide and active light emitter.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Collin, Field Theory of Guided Waves, 2nd ed, D. G. Dudley ed (Wiley-IEEE Press., New York, 1991).
  2. R. G. Harrington, Time-Harmonic Electromagnetic Fields, D. G. Dudley ed. (John Wiley & Sons Inc., New York, 2001).
  3. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
    [CrossRef] [PubMed]
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole array,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  5. F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
    [CrossRef]
  6. R. W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48(12), 928–936 (1935).
    [CrossRef]
  7. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, G. Hohler ed. (Springer-Verlag, Berlin 1998).
  8. H. Lochbihler and R. Depine, “Highly conducting wire gratings in the resonance region,” Appl. Opt. 32(19), 3459–3465 (1993).
    [CrossRef] [PubMed]
  9. M. S. Shishodia and A. G. Unil Perera, “Heterojunction plasmonic midinfrared detectors,” J. Appl. Phys. 109(4), 043108 (2011).
    [CrossRef]
  10. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]
  11. S. Adachi, Physical Properties of III–V Semiconductor Compounds (John Wiley & Sons, Inc., New York, 1992).
  12. K. G. Lee and Q.-H. Park, “Coupling of surface Plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
    [CrossRef] [PubMed]
  13. X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. (Deerfield Beach Fla.) 20(23), 4455–4459 (2008).
    [CrossRef]
  14. D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1(3), 032151 (2011).
    [CrossRef]
  15. N. Finger, W. Schrenk, and E. Gornik, “Analysis of TM-Polarized DFB laser structures with metal surface gratings,” IEEE J. Quantum Electron. 36(7), 780–786 (2000).
    [CrossRef]
  16. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
    [CrossRef]
  17. T. Gong, W. L. Nighan, and P. M. Fauchet, “Hotcarrier Coulomb effects in GaAs investigated by femtosecond spectroscopy around the band edge,” Appl. Phys. Lett. 57(25), 2713–2715 (1990).
    [CrossRef]
  18. J. Hader, S. W. Koch, and J. V. Moloney, “Microscopic theory of gain and spontaneous emission in GaInNAs laser material,” Solid-State Electron. 47(3), 513–521 (2003).
    [CrossRef]

2011 (2)

M. S. Shishodia and A. G. Unil Perera, “Heterojunction plasmonic midinfrared detectors,” J. Appl. Phys. 109(4), 043108 (2011).
[CrossRef]

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1(3), 032151 (2011).
[CrossRef]

2008 (1)

X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. (Deerfield Beach Fla.) 20(23), 4455–4459 (2008).
[CrossRef]

2005 (1)

K. G. Lee and Q.-H. Park, “Coupling of surface Plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[CrossRef] [PubMed]

2003 (1)

J. Hader, S. W. Koch, and J. V. Moloney, “Microscopic theory of gain and spontaneous emission in GaInNAs laser material,” Solid-State Electron. 47(3), 513–521 (2003).
[CrossRef]

2002 (1)

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[CrossRef]

2000 (1)

N. Finger, W. Schrenk, and E. Gornik, “Analysis of TM-Polarized DFB laser structures with metal surface gratings,” IEEE J. Quantum Electron. 36(7), 780–786 (2000).
[CrossRef]

1998 (3)

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole array,” Nature 391(6668), 667–669 (1998).
[CrossRef]

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[CrossRef] [PubMed]

1993 (1)

1990 (2)

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

T. Gong, W. L. Nighan, and P. M. Fauchet, “Hotcarrier Coulomb effects in GaAs investigated by femtosecond spectroscopy around the band edge,” Appl. Phys. Lett. 57(25), 2713–2715 (1990).
[CrossRef]

1935 (1)

R. W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48(12), 928–936 (1935).
[CrossRef]

Akozbek, N.

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1(3), 032151 (2011).
[CrossRef]

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

Bloemer, M. J.

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1(3), 032151 (2011).
[CrossRef]

Chow, E.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[CrossRef] [PubMed]

de Ceglia, D.

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1(3), 032151 (2011).
[CrossRef]

Del Alamo, J. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

Depine, R.

Djurisic, A. B.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole array,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Elazar, J. M.

Fauchet, P. M.

T. Gong, W. L. Nighan, and P. M. Fauchet, “Hotcarrier Coulomb effects in GaAs investigated by femtosecond spectroscopy around the band edge,” Appl. Phys. Lett. 57(25), 2713–2715 (1990).
[CrossRef]

Finger, N.

N. Finger, W. Schrenk, and E. Gornik, “Analysis of TM-Polarized DFB laser structures with metal surface gratings,” IEEE J. Quantum Electron. 36(7), 780–786 (2000).
[CrossRef]

Friend, R. H.

X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. (Deerfield Beach Fla.) 20(23), 4455–4459 (2008).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole array,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gong, T.

T. Gong, W. L. Nighan, and P. M. Fauchet, “Hotcarrier Coulomb effects in GaAs investigated by femtosecond spectroscopy around the band edge,” Appl. Phys. Lett. 57(25), 2713–2715 (1990).
[CrossRef]

Gornik, E.

N. Finger, W. Schrenk, and E. Gornik, “Analysis of TM-Polarized DFB laser structures with metal surface gratings,” IEEE J. Quantum Electron. 36(7), 780–786 (2000).
[CrossRef]

Hader, J.

J. Hader, S. W. Koch, and J. V. Moloney, “Microscopic theory of gain and spontaneous emission in GaInNAs laser material,” Solid-State Electron. 47(3), 513–521 (2003).
[CrossRef]

Hietala, V.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[CrossRef] [PubMed]

Hodgkiss, J. M.

X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. (Deerfield Beach Fla.) 20(23), 4455–4459 (2008).
[CrossRef]

Joannopoulos, J. D.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[CrossRef] [PubMed]

Koch, S. W.

J. Hader, S. W. Koch, and J. V. Moloney, “Microscopic theory of gain and spontaneous emission in GaInNAs laser material,” Solid-State Electron. 47(3), 513–521 (2003).
[CrossRef]

Lee, K. G.

K. G. Lee and Q.-H. Park, “Coupling of surface Plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole array,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Lin, S. Y.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[CrossRef] [PubMed]

Lochbihler, H.

Majewski, M. L.

Martin-Moreno, L.

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[CrossRef]

Moloney, J. V.

J. Hader, S. W. Koch, and J. V. Moloney, “Microscopic theory of gain and spontaneous emission in GaInNAs laser material,” Solid-State Electron. 47(3), 513–521 (2003).
[CrossRef]

Nighan, W. L.

T. Gong, W. L. Nighan, and P. M. Fauchet, “Hotcarrier Coulomb effects in GaAs investigated by femtosecond spectroscopy around the band edge,” Appl. Phys. Lett. 57(25), 2713–2715 (1990).
[CrossRef]

Park, Q.-H.

K. G. Lee and Q.-H. Park, “Coupling of surface Plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[CrossRef] [PubMed]

Rakic, A. D.

Scalora, M.

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1(3), 032151 (2011).
[CrossRef]

Schrenk, W.

N. Finger, W. Schrenk, and E. Gornik, “Analysis of TM-Polarized DFB laser structures with metal surface gratings,” IEEE J. Quantum Electron. 36(7), 780–786 (2000).
[CrossRef]

Shishodia, M. S.

M. S. Shishodia and A. G. Unil Perera, “Heterojunction plasmonic midinfrared detectors,” J. Appl. Phys. 109(4), 043108 (2011).
[CrossRef]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

Sun, B.

X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. (Deerfield Beach Fla.) 20(23), 4455–4459 (2008).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole array,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Unil Perera, A. G.

M. S. Shishodia and A. G. Unil Perera, “Heterojunction plasmonic midinfrared detectors,” J. Appl. Phys. 109(4), 043108 (2011).
[CrossRef]

Villeneuve, P. R.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[CrossRef] [PubMed]

Vincenti, M. A.

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1(3), 032151 (2011).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole array,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wood, R. W.

R. W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48(12), 928–936 (1935).
[CrossRef]

Zhang, X.

X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. (Deerfield Beach Fla.) 20(23), 4455–4459 (2008).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. (Deerfield Beach Fla.) 20(23), 4455–4459 (2008).
[CrossRef]

AIP Advances (1)

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1(3), 032151 (2011).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

T. Gong, W. L. Nighan, and P. M. Fauchet, “Hotcarrier Coulomb effects in GaAs investigated by femtosecond spectroscopy around the band edge,” Appl. Phys. Lett. 57(25), 2713–2715 (1990).
[CrossRef]

IEEE J. Quantum Electron. (2)

N. Finger, W. Schrenk, and E. Gornik, “Analysis of TM-Polarized DFB laser structures with metal surface gratings,” IEEE J. Quantum Electron. 36(7), 780–786 (2000).
[CrossRef]

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

J. Appl. Phys. (1)

M. S. Shishodia and A. G. Unil Perera, “Heterojunction plasmonic midinfrared detectors,” J. Appl. Phys. 109(4), 043108 (2011).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole array,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Phys. Rev. (1)

R. W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48(12), 928–936 (1935).
[CrossRef]

Phys. Rev. B (1)

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

K. G. Lee and Q.-H. Park, “Coupling of surface Plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[CrossRef] [PubMed]

Science (1)

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[CrossRef] [PubMed]

Solid-State Electron. (1)

J. Hader, S. W. Koch, and J. V. Moloney, “Microscopic theory of gain and spontaneous emission in GaInNAs laser material,” Solid-State Electron. 47(3), 513–521 (2003).
[CrossRef]

Other (4)

S. Adachi, Physical Properties of III–V Semiconductor Compounds (John Wiley & Sons, Inc., New York, 1992).

R. E. Collin, Field Theory of Guided Waves, 2nd ed, D. G. Dudley ed (Wiley-IEEE Press., New York, 1991).

R. G. Harrington, Time-Harmonic Electromagnetic Fields, D. G. Dudley ed. (John Wiley & Sons Inc., New York, 2001).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, G. Hohler ed. (Springer-Verlag, Berlin 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the InGaAs slab waveguide structure covered by periodic gold nano-slit array. The thickness of InGaAs and gold is 370 nm and 50 nm, respectively. The opening ratio is 40% in each metal grating. Electric field of the incident light was TM polarized and the incident angle θ was changed in the transmission measurement. (b) Transmission spectra measured for metal slits with different periods at normal incidence. Inset is a SEM image for the slit with a period of 420 nm. (c) Critical wavelength with a dip in transmission spectra and the corresponding effective refractive index (neff) as a function of slit period.

Fig. 2
Fig. 2

(a) Transmission spectrum measured for metal slit array with Λ = 450 nm at normal incidence. The arrows indicate positions of transmission peak and dip at 1,480 nm and 1,570 nm, respectively. Spatial distribution of Hz field obtained from FDTD simulation at the same condition with the measurement is shown for the transmission peak (b), and for the transmission dip (c) wavelength.

Fig. 3
Fig. 3

(a) Contour plot of the measured transmission spectrum with the wavelength as horizontal axis and the incident angle as vertical axis. (b) Transmission spectra measured at different incident angles for the slit array with a period of 470 nm. The dashed lines show the evolution of the transmission dip with an incident angle

Fig. 4
Fig. 4

(a) Calculated transmission spectra using a modal expansion model for grating period of 420, 450, and 480 nm. Dotted line is the absorption coefficient dispersion of the InGaAs material used in the simulation. (b) Comparison of the experimental and theoretical transmission spectrum for a grating with Λ = 450 nm. The transmittance for the same condition but without absorption (Im[εInGaAs] = 0) is shown together.

Fig. 5
Fig. 5

(a) PL spectra measured for slit arrays with different periods. The dashed line is PL signal from the bare InGaAs without metal grating. Inset is wavelength of the maximum PL enhancement as a function of grating period. (b) Comparison of PL and transmission spectrum for the same slit period of 470 nm.

Fig. 6
Fig. 6

Schematic illustration of transmittance of photons emitted from InGaAs layer into air and InP substrate. θi denotes the incident angle and θt1 and θt3 are the transmission angles in air and InP, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H y (x,z)= n A n exp(i( k xn x+ k zn z))+ B n exp(i( k xn x k zn z)),
Δn(λ)= e 0 2 λ 2 8 π 2 n(λ) ε 0 c 0 2 ( N e m e + N p m lh 1/2 + m hh 1/2 m lh 3/2 + m hh 3/2 ),
θ i = sin 1 ( n air n InGaAs ± Nλ n InGaAs Λ ).

Metrics