Abstract

A novel prototype of an electrothermal chevron-beam actuator based microelectromechanical systems (MEMS) platform has been successfully developed for circumferential scan. Microassembly technology is utilized to construct this platform, which consists of a MEMS chevron-beam type microactuator and a micro-reflector. The proposed electrothermal microactuators with a two-stage electrothermal cascaded chevron-beam driving mechanism provide displacement amplification, thus enabling a highly reflective micro-pyramidal polygon reflector to rotate a large angle for light beam scanning. This MEMS platform is ultra-compact, supports circumferential imaging capability and is suitable for endoscopic optical coherence tomography (EOCT) applications, for example, for intravascular cancer detection.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
    [CrossRef] [PubMed]
  3. P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, J. G. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, and C. Petersen, “Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(19), 2261–2263 (2004).
    [CrossRef] [PubMed]
  4. J. Su, J. Zhang, L. Yu, and Z. Chen, “In vivo three-dimensional microelectromechanical endoscopic swept source optical coherence tomography,” Opt. Express 15(16), 10390–10396 (2007).
    [CrossRef] [PubMed]
  5. P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett. 29(11), 1236–1238 (2004).
    [CrossRef] [PubMed]
  6. J. A. Ayers, W. C. Tang, and Z. Chen, “360° rotating micro mirror for transmitting and sensing optical coherence tomography signals,” in Proceedings of IEEE Sensors (2004), Vol. 1, pp. 497–500.
  7. M.-H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “1998 Electrostatic comb drive-actuated micromirrors for laser-beam scanning and positioning,” IEEE J. Microelectromech. Syst. 7(1), 27–37 (1998).
    [CrossRef]
  8. W. Piyawattanametha, P. Patterson, D. Hah, H. Toshiyoshi, and M. Wu, “A 2-D scanner by surface and bulk micromachined angular vertical comb actuators,” in Proceeding of IEEE/LEOS Int. Conf. of Optical MEMS (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2003), pp. 93–94.
  9. I. Jung, U. Krishnamoorthy, and O. Solgaard, “High fill-factor two axis gimbaled tip-tilt-piston micromirror array actuated by self-aligned vertical electrostatic comb drives,” J. Microelectromech. Syst. 15(3), 563–571 (2006).
    [CrossRef]
  10. V. Milanovic, G. A. Matus, and D. T. McCormick, “Gimbal-less monolithic silicon actuators for tip-tilt-piston micromirror applications,” IEEE J. Sel. Top. Quantum Electron. 10(3), 462–471 (2004).
    [CrossRef]
  11. A. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst. 15(4), 786–794 (2006).
    [CrossRef]
  12. K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express 15(26), 18130–18140 (2007).
    [CrossRef] [PubMed]
  13. H. Xie, Y. Pan, and G. Fedder, “An SCS CMOS micromirror for optical coherence tomographic imaging,” in Proceedings of IEEE Conference on Microelectromechanical Systems (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2002), pp. 495–499.
  14. A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
    [CrossRef]
  15. L. Wu and H. Xie, “Electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging,” J. Micro/Nanolith. MEMS MOEMS 8, 013030 (2009).
  16. L. Wu and H. Xie, “A scanning micromirror with stationary rotation axis and dual reflective surfaces for 360° forward-view endoscopic imaging,” in Proceedings of 15th International Conf. Solid-State, Actuators and Microsystems. (Transducers, Denver, CO, USA, 2009), pp. 2222–2225.
  17. Y. Gianchandani and K. Najafi, “Bent-beam strain sensors,” J. Microelectromech. Syst. 5(1), 52–58 (1996).
    [CrossRef]
  18. L. Que, J. Park, and Y. Gianchandani, “Bent-beam electro-thermal actuators for high force applications,” in Proceeding of 12th IEEE Conference on MEMS (Institute of Electrical and Electronics Engineers, Orlando, FL, 1999), pp. 31–36.
  19. L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-beam electrothermal actuators—Part I: Single beam and cascaded devices,” J. Microelectromech. Syst. 10(2), 247–254 (2001).
    [CrossRef]
  20. J.-S. Park, L. L. Chu, A. D. Oliver, and Y. B. Gianchandani, “Bent-beam electrothermal actuators—Part II: Linear and rotary microengines,” J. Microelectromech. Syst. 10(2), 255–262 (2001).
    [CrossRef]
  21. C. Lott, T. McLain, J. Harb, and L. Howell, “Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator,” Sens. Actuators A Phys. 101(1-2), 239–250 (2002).
    [CrossRef]
  22. Y. Shimamura, K. Udeshi, L. Que, J. Park, and Y. Gianchandani, “Impact behavior and energy transfer efficiency of pulse-driven bent-beam electrothermal actuators,” J. Microelectromech. Syst. 15(1), 101–110 (2006).
    [CrossRef]
  23. Y. Zhang, Q. Huang, R. Li, and W. Li, “Macromodeling for polysilicon cascaded bent beam electrothermal microactuators,” Sens. Actuators A Phys. 128(1), 165–175 (2006).
    [CrossRef]
  24. L. Chu, L. Que, D. Oliver, and Y. Gianchandani, “Lifetime studies of electrothermal bent-beam actuators in single-crystal silicon and polysilicon,” J. Microelectromech. Syst. 15(3), 498–506 (2006).
    [CrossRef]
  25. P. Nallamuthu, T. Hwang, D. Jeong, S. Moon, S. Seo, and J. Lee, “Contact resistance of micromachined electrical switches incorporating a chevron-type bi-stable spring,” J. Micromech. Microeng. 21(1), 015018 (2011).
    [CrossRef]
  26. B. Ando, S. Baglio, N. Savalli, and C. Trigona, “Cascaded ‘Triple-Bent-Beam’ MEMS sensor for contactless temperature measurements in nonaccessible environments,” IEEE Trans. Instrum. Meas. 60(4), 1348–1357 (2011).
    [CrossRef]
  27. W. Fan and D. Zhang, “A simple approach to convex corner compensation in anisotropic KOH etching on a (100) silicon wafer,” J. Micromech. Microeng. 16(10), 1951–1957 (2006).
    [CrossRef]

2011 (2)

P. Nallamuthu, T. Hwang, D. Jeong, S. Moon, S. Seo, and J. Lee, “Contact resistance of micromachined electrical switches incorporating a chevron-type bi-stable spring,” J. Micromech. Microeng. 21(1), 015018 (2011).
[CrossRef]

B. Ando, S. Baglio, N. Savalli, and C. Trigona, “Cascaded ‘Triple-Bent-Beam’ MEMS sensor for contactless temperature measurements in nonaccessible environments,” IEEE Trans. Instrum. Meas. 60(4), 1348–1357 (2011).
[CrossRef]

2009 (1)

L. Wu and H. Xie, “Electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging,” J. Micro/Nanolith. MEMS MOEMS 8, 013030 (2009).

2007 (2)

2006 (6)

Y. Shimamura, K. Udeshi, L. Que, J. Park, and Y. Gianchandani, “Impact behavior and energy transfer efficiency of pulse-driven bent-beam electrothermal actuators,” J. Microelectromech. Syst. 15(1), 101–110 (2006).
[CrossRef]

Y. Zhang, Q. Huang, R. Li, and W. Li, “Macromodeling for polysilicon cascaded bent beam electrothermal microactuators,” Sens. Actuators A Phys. 128(1), 165–175 (2006).
[CrossRef]

L. Chu, L. Que, D. Oliver, and Y. Gianchandani, “Lifetime studies of electrothermal bent-beam actuators in single-crystal silicon and polysilicon,” J. Microelectromech. Syst. 15(3), 498–506 (2006).
[CrossRef]

A. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst. 15(4), 786–794 (2006).
[CrossRef]

I. Jung, U. Krishnamoorthy, and O. Solgaard, “High fill-factor two axis gimbaled tip-tilt-piston micromirror array actuated by self-aligned vertical electrostatic comb drives,” J. Microelectromech. Syst. 15(3), 563–571 (2006).
[CrossRef]

W. Fan and D. Zhang, “A simple approach to convex corner compensation in anisotropic KOH etching on a (100) silicon wafer,” J. Micromech. Microeng. 16(10), 1951–1957 (2006).
[CrossRef]

2004 (4)

P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett. 29(11), 1236–1238 (2004).
[CrossRef] [PubMed]

P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, J. G. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, and C. Petersen, “Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(19), 2261–2263 (2004).
[CrossRef] [PubMed]

V. Milanovic, G. A. Matus, and D. T. McCormick, “Gimbal-less monolithic silicon actuators for tip-tilt-piston micromirror applications,” IEEE J. Sel. Top. Quantum Electron. 10(3), 462–471 (2004).
[CrossRef]

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

2002 (1)

C. Lott, T. McLain, J. Harb, and L. Howell, “Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator,” Sens. Actuators A Phys. 101(1-2), 239–250 (2002).
[CrossRef]

2001 (2)

L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-beam electrothermal actuators—Part I: Single beam and cascaded devices,” J. Microelectromech. Syst. 10(2), 247–254 (2001).
[CrossRef]

J.-S. Park, L. L. Chu, A. D. Oliver, and Y. B. Gianchandani, “Bent-beam electrothermal actuators—Part II: Linear and rotary microengines,” J. Microelectromech. Syst. 10(2), 255–262 (2001).
[CrossRef]

1998 (1)

M.-H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “1998 Electrostatic comb drive-actuated micromirrors for laser-beam scanning and positioning,” IEEE J. Microelectromech. Syst. 7(1), 27–37 (1998).
[CrossRef]

1997 (1)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

1996 (1)

Y. Gianchandani and K. Najafi, “Bent-beam strain sensors,” J. Microelectromech. Syst. 5(1), 52–58 (1996).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Aguirre, A. D.

Ando, B.

B. Ando, S. Baglio, N. Savalli, and C. Trigona, “Cascaded ‘Triple-Bent-Beam’ MEMS sensor for contactless temperature measurements in nonaccessible environments,” IEEE Trans. Instrum. Meas. 60(4), 1348–1357 (2011).
[CrossRef]

Baglio, S.

B. Ando, S. Baglio, N. Savalli, and C. Trigona, “Cascaded ‘Triple-Bent-Beam’ MEMS sensor for contactless temperature measurements in nonaccessible environments,” IEEE Trans. Instrum. Meas. 60(4), 1348–1357 (2011).
[CrossRef]

Bancu, M. G.

Bernstein, J. J.

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Bouma, B. E.

K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express 15(26), 18130–18140 (2007).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Brenner, M.

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Brown, D.

A. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst. 15(4), 786–794 (2006).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Y.

Chen, Z.

Chu, L.

L. Chu, L. Que, D. Oliver, and Y. Gianchandani, “Lifetime studies of electrothermal bent-beam actuators in single-crystal silicon and polysilicon,” J. Microelectromech. Syst. 15(3), 498–506 (2006).
[CrossRef]

Chu, L. L.

J.-S. Park, L. L. Chu, A. D. Oliver, and Y. B. Gianchandani, “Bent-beam electrothermal actuators—Part II: Linear and rotary microengines,” J. Microelectromech. Syst. 10(2), 255–262 (2001).
[CrossRef]

de Boer, J. F.

Fan, W.

W. Fan and D. Zhang, “A simple approach to convex corner compensation in anisotropic KOH etching on a (100) silicon wafer,” J. Micromech. Microeng. 16(10), 1951–1957 (2006).
[CrossRef]

Fedder, G. K.

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, J. G. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, and C. Petersen, “Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(19), 2261–2263 (2004).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Gianchandani, Y.

Y. Shimamura, K. Udeshi, L. Que, J. Park, and Y. Gianchandani, “Impact behavior and energy transfer efficiency of pulse-driven bent-beam electrothermal actuators,” J. Microelectromech. Syst. 15(1), 101–110 (2006).
[CrossRef]

L. Chu, L. Que, D. Oliver, and Y. Gianchandani, “Lifetime studies of electrothermal bent-beam actuators in single-crystal silicon and polysilicon,” J. Microelectromech. Syst. 15(3), 498–506 (2006).
[CrossRef]

Y. Gianchandani and K. Najafi, “Bent-beam strain sensors,” J. Microelectromech. Syst. 5(1), 52–58 (1996).
[CrossRef]

Gianchandani, Y. B.

L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-beam electrothermal actuators—Part I: Single beam and cascaded devices,” J. Microelectromech. Syst. 10(2), 247–254 (2001).
[CrossRef]

J.-S. Park, L. L. Chu, A. D. Oliver, and Y. B. Gianchandani, “Bent-beam electrothermal actuators—Part II: Linear and rotary microengines,” J. Microelectromech. Syst. 10(2), 255–262 (2001).
[CrossRef]

Goodnow, J.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Harb, J.

C. Lott, T. McLain, J. Harb, and L. Howell, “Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator,” Sens. Actuators A Phys. 101(1-2), 239–250 (2002).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Herz, P. R.

Howell, L.

C. Lott, T. McLain, J. Harb, and L. Howell, “Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator,” Sens. Actuators A Phys. 101(1-2), 239–250 (2002).
[CrossRef]

Hsiung, P.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, Q.

Y. Zhang, Q. Huang, R. Li, and W. Li, “Macromodeling for polysilicon cascaded bent beam electrothermal microactuators,” Sens. Actuators A Phys. 128(1), 165–175 (2006).
[CrossRef]

Hwang, T.

P. Nallamuthu, T. Hwang, D. Jeong, S. Moon, S. Seo, and J. Lee, “Contact resistance of micromachined electrical switches incorporating a chevron-type bi-stable spring,” J. Micromech. Microeng. 21(1), 015018 (2011).
[CrossRef]

Jain, A.

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

Jeong, D.

P. Nallamuthu, T. Hwang, D. Jeong, S. Moon, S. Seo, and J. Lee, “Contact resistance of micromachined electrical switches incorporating a chevron-type bi-stable spring,” J. Micromech. Microeng. 21(1), 015018 (2011).
[CrossRef]

Jung, I.

I. Jung, U. Krishnamoorthy, and O. Solgaard, “High fill-factor two axis gimbaled tip-tilt-piston micromirror array actuated by self-aligned vertical electrostatic comb drives,” J. Microelectromech. Syst. 15(3), 563–571 (2006).
[CrossRef]

Kiang, M.-H.

M.-H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “1998 Electrostatic comb drive-actuated micromirrors for laser-beam scanning and positioning,” IEEE J. Microelectromech. Syst. 7(1), 27–37 (1998).
[CrossRef]

Kim, K. H.

Kopa, A.

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

Krishnamoorthy, U.

I. Jung, U. Krishnamoorthy, and O. Solgaard, “High fill-factor two axis gimbaled tip-tilt-piston micromirror array actuated by self-aligned vertical electrostatic comb drives,” J. Microelectromech. Syst. 15(3), 563–571 (2006).
[CrossRef]

Lau, K. Y.

M.-H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “1998 Electrostatic comb drive-actuated micromirrors for laser-beam scanning and positioning,” IEEE J. Microelectromech. Syst. 7(1), 27–37 (1998).
[CrossRef]

Lee, J.

P. Nallamuthu, T. Hwang, D. Jeong, S. Moon, S. Seo, and J. Lee, “Contact resistance of micromachined electrical switches incorporating a chevron-type bi-stable spring,” J. Micromech. Microeng. 21(1), 015018 (2011).
[CrossRef]

Lee, T. W.

Li, R.

Y. Zhang, Q. Huang, R. Li, and W. Li, “Macromodeling for polysilicon cascaded bent beam electrothermal microactuators,” Sens. Actuators A Phys. 128(1), 165–175 (2006).
[CrossRef]

Li, W.

Y. Zhang, Q. Huang, R. Li, and W. Li, “Macromodeling for polysilicon cascaded bent beam electrothermal microactuators,” Sens. Actuators A Phys. 128(1), 165–175 (2006).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lott, C.

C. Lott, T. McLain, J. Harb, and L. Howell, “Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator,” Sens. Actuators A Phys. 101(1-2), 239–250 (2002).
[CrossRef]

Madden, K.

Maguluri, G. N.

Matus, G. A.

V. Milanovic, G. A. Matus, and D. T. McCormick, “Gimbal-less monolithic silicon actuators for tip-tilt-piston micromirror applications,” IEEE J. Sel. Top. Quantum Electron. 10(3), 462–471 (2004).
[CrossRef]

McCormick, D. T.

V. Milanovic, G. A. Matus, and D. T. McCormick, “Gimbal-less monolithic silicon actuators for tip-tilt-piston micromirror applications,” IEEE J. Sel. Top. Quantum Electron. 10(3), 462–471 (2004).
[CrossRef]

McLain, T.

C. Lott, T. McLain, J. Harb, and L. Howell, “Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator,” Sens. Actuators A Phys. 101(1-2), 239–250 (2002).
[CrossRef]

Milanovic, V.

V. Milanovic, G. A. Matus, and D. T. McCormick, “Gimbal-less monolithic silicon actuators for tip-tilt-piston micromirror applications,” IEEE J. Sel. Top. Quantum Electron. 10(3), 462–471 (2004).
[CrossRef]

Montague, T.

A. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst. 15(4), 786–794 (2006).
[CrossRef]

Moon, S.

P. Nallamuthu, T. Hwang, D. Jeong, S. Moon, S. Seo, and J. Lee, “Contact resistance of micromachined electrical switches incorporating a chevron-type bi-stable spring,” J. Micromech. Microeng. 21(1), 015018 (2011).
[CrossRef]

Mukai, D. S.

Muller, R. S.

M.-H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “1998 Electrostatic comb drive-actuated micromirrors for laser-beam scanning and positioning,” IEEE J. Microelectromech. Syst. 7(1), 27–37 (1998).
[CrossRef]

Najafi, K.

Y. Gianchandani and K. Najafi, “Bent-beam strain sensors,” J. Microelectromech. Syst. 5(1), 52–58 (1996).
[CrossRef]

Nallamuthu, P.

P. Nallamuthu, T. Hwang, D. Jeong, S. Moon, S. Seo, and J. Lee, “Contact resistance of micromachined electrical switches incorporating a chevron-type bi-stable spring,” J. Micromech. Microeng. 21(1), 015018 (2011).
[CrossRef]

Oliver, A. D.

J.-S. Park, L. L. Chu, A. D. Oliver, and Y. B. Gianchandani, “Bent-beam electrothermal actuators—Part II: Linear and rotary microengines,” J. Microelectromech. Syst. 10(2), 255–262 (2001).
[CrossRef]

Oliver, D.

L. Chu, L. Que, D. Oliver, and Y. Gianchandani, “Lifetime studies of electrothermal bent-beam actuators in single-crystal silicon and polysilicon,” J. Microelectromech. Syst. 15(3), 498–506 (2006).
[CrossRef]

Pan, Y.

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

Park, B. H.

Park, J.

Y. Shimamura, K. Udeshi, L. Que, J. Park, and Y. Gianchandani, “Impact behavior and energy transfer efficiency of pulse-driven bent-beam electrothermal actuators,” J. Microelectromech. Syst. 15(1), 101–110 (2006).
[CrossRef]

Park, J.-S.

L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-beam electrothermal actuators—Part I: Single beam and cascaded devices,” J. Microelectromech. Syst. 10(2), 247–254 (2001).
[CrossRef]

J.-S. Park, L. L. Chu, A. D. Oliver, and Y. B. Gianchandani, “Bent-beam electrothermal actuators—Part II: Linear and rotary microengines,” J. Microelectromech. Syst. 10(2), 255–262 (2001).
[CrossRef]

Petersen, C.

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Que, L.

L. Chu, L. Que, D. Oliver, and Y. Gianchandani, “Lifetime studies of electrothermal bent-beam actuators in single-crystal silicon and polysilicon,” J. Microelectromech. Syst. 15(3), 498–506 (2006).
[CrossRef]

Y. Shimamura, K. Udeshi, L. Que, J. Park, and Y. Gianchandani, “Impact behavior and energy transfer efficiency of pulse-driven bent-beam electrothermal actuators,” J. Microelectromech. Syst. 15(1), 101–110 (2006).
[CrossRef]

L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-beam electrothermal actuators—Part I: Single beam and cascaded devices,” J. Microelectromech. Syst. 10(2), 247–254 (2001).
[CrossRef]

Rogomentich, F. J.

Savalli, N.

B. Ando, S. Baglio, N. Savalli, and C. Trigona, “Cascaded ‘Triple-Bent-Beam’ MEMS sensor for contactless temperature measurements in nonaccessible environments,” IEEE Trans. Instrum. Meas. 60(4), 1348–1357 (2011).
[CrossRef]

Schmitt, J.

Schneider, K.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Seo, S.

P. Nallamuthu, T. Hwang, D. Jeong, S. Moon, S. Seo, and J. Lee, “Contact resistance of micromachined electrical switches incorporating a chevron-type bi-stable spring,” J. Micromech. Microeng. 21(1), 015018 (2011).
[CrossRef]

Shimamura, Y.

Y. Shimamura, K. Udeshi, L. Que, J. Park, and Y. Gianchandani, “Impact behavior and energy transfer efficiency of pulse-driven bent-beam electrothermal actuators,” J. Microelectromech. Syst. 15(1), 101–110 (2006).
[CrossRef]

Solgaard, O.

I. Jung, U. Krishnamoorthy, and O. Solgaard, “High fill-factor two axis gimbaled tip-tilt-piston micromirror array actuated by self-aligned vertical electrostatic comb drives,” J. Microelectromech. Syst. 15(3), 563–571 (2006).
[CrossRef]

M.-H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “1998 Electrostatic comb drive-actuated micromirrors for laser-beam scanning and positioning,” IEEE J. Microelectromech. Syst. 7(1), 27–37 (1998).
[CrossRef]

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Sprague, R.

A. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst. 15(4), 786–794 (2006).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Su, J.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Tran, P. H.

Trigona, C.

B. Ando, S. Baglio, N. Savalli, and C. Trigona, “Cascaded ‘Triple-Bent-Beam’ MEMS sensor for contactless temperature measurements in nonaccessible environments,” IEEE Trans. Instrum. Meas. 60(4), 1348–1357 (2011).
[CrossRef]

Udeshi, K.

Y. Shimamura, K. Udeshi, L. Que, J. Park, and Y. Gianchandani, “Impact behavior and energy transfer efficiency of pulse-driven bent-beam electrothermal actuators,” J. Microelectromech. Syst. 15(1), 101–110 (2006).
[CrossRef]

Urey, H.

A. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst. 15(4), 786–794 (2006).
[CrossRef]

Wu, L.

L. Wu and H. Xie, “Electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging,” J. Micro/Nanolith. MEMS MOEMS 8, 013030 (2009).

Xie, H.

L. Wu and H. Xie, “Electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging,” J. Micro/Nanolith. MEMS MOEMS 8, 013030 (2009).

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

Yalcinkaya, A.

A. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst. 15(4), 786–794 (2006).
[CrossRef]

Yu, L.

Zhang, D.

W. Fan and D. Zhang, “A simple approach to convex corner compensation in anisotropic KOH etching on a (100) silicon wafer,” J. Micromech. Microeng. 16(10), 1951–1957 (2006).
[CrossRef]

Zhang, J.

Zhang, Y.

Y. Zhang, Q. Huang, R. Li, and W. Li, “Macromodeling for polysilicon cascaded bent beam electrothermal microactuators,” Sens. Actuators A Phys. 128(1), 165–175 (2006).
[CrossRef]

IEEE J. Microelectromech. Syst. (1)

M.-H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “1998 Electrostatic comb drive-actuated micromirrors for laser-beam scanning and positioning,” IEEE J. Microelectromech. Syst. 7(1), 27–37 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

V. Milanovic, G. A. Matus, and D. T. McCormick, “Gimbal-less monolithic silicon actuators for tip-tilt-piston micromirror applications,” IEEE J. Sel. Top. Quantum Electron. 10(3), 462–471 (2004).
[CrossRef]

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

B. Ando, S. Baglio, N. Savalli, and C. Trigona, “Cascaded ‘Triple-Bent-Beam’ MEMS sensor for contactless temperature measurements in nonaccessible environments,” IEEE Trans. Instrum. Meas. 60(4), 1348–1357 (2011).
[CrossRef]

J. Micro/Nanolith. MEMS MOEMS (1)

L. Wu and H. Xie, “Electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging,” J. Micro/Nanolith. MEMS MOEMS 8, 013030 (2009).

J. Microelectromech. Syst. (7)

A. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” J. Microelectromech. Syst. 15(4), 786–794 (2006).
[CrossRef]

Y. Gianchandani and K. Najafi, “Bent-beam strain sensors,” J. Microelectromech. Syst. 5(1), 52–58 (1996).
[CrossRef]

L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-beam electrothermal actuators—Part I: Single beam and cascaded devices,” J. Microelectromech. Syst. 10(2), 247–254 (2001).
[CrossRef]

J.-S. Park, L. L. Chu, A. D. Oliver, and Y. B. Gianchandani, “Bent-beam electrothermal actuators—Part II: Linear and rotary microengines,” J. Microelectromech. Syst. 10(2), 255–262 (2001).
[CrossRef]

Y. Shimamura, K. Udeshi, L. Que, J. Park, and Y. Gianchandani, “Impact behavior and energy transfer efficiency of pulse-driven bent-beam electrothermal actuators,” J. Microelectromech. Syst. 15(1), 101–110 (2006).
[CrossRef]

L. Chu, L. Que, D. Oliver, and Y. Gianchandani, “Lifetime studies of electrothermal bent-beam actuators in single-crystal silicon and polysilicon,” J. Microelectromech. Syst. 15(3), 498–506 (2006).
[CrossRef]

I. Jung, U. Krishnamoorthy, and O. Solgaard, “High fill-factor two axis gimbaled tip-tilt-piston micromirror array actuated by self-aligned vertical electrostatic comb drives,” J. Microelectromech. Syst. 15(3), 563–571 (2006).
[CrossRef]

J. Micromech. Microeng. (2)

W. Fan and D. Zhang, “A simple approach to convex corner compensation in anisotropic KOH etching on a (100) silicon wafer,” J. Micromech. Microeng. 16(10), 1951–1957 (2006).
[CrossRef]

P. Nallamuthu, T. Hwang, D. Jeong, S. Moon, S. Seo, and J. Lee, “Contact resistance of micromachined electrical switches incorporating a chevron-type bi-stable spring,” J. Micromech. Microeng. 21(1), 015018 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (2)

Y. Zhang, Q. Huang, R. Li, and W. Li, “Macromodeling for polysilicon cascaded bent beam electrothermal microactuators,” Sens. Actuators A Phys. 128(1), 165–175 (2006).
[CrossRef]

C. Lott, T. McLain, J. Harb, and L. Howell, “Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator,” Sens. Actuators A Phys. 101(1-2), 239–250 (2002).
[CrossRef]

Other (5)

L. Que, J. Park, and Y. Gianchandani, “Bent-beam electro-thermal actuators for high force applications,” in Proceeding of 12th IEEE Conference on MEMS (Institute of Electrical and Electronics Engineers, Orlando, FL, 1999), pp. 31–36.

J. A. Ayers, W. C. Tang, and Z. Chen, “360° rotating micro mirror for transmitting and sensing optical coherence tomography signals,” in Proceedings of IEEE Sensors (2004), Vol. 1, pp. 497–500.

W. Piyawattanametha, P. Patterson, D. Hah, H. Toshiyoshi, and M. Wu, “A 2-D scanner by surface and bulk micromachined angular vertical comb actuators,” in Proceeding of IEEE/LEOS Int. Conf. of Optical MEMS (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2003), pp. 93–94.

H. Xie, Y. Pan, and G. Fedder, “An SCS CMOS micromirror for optical coherence tomographic imaging,” in Proceedings of IEEE Conference on Microelectromechanical Systems (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2002), pp. 495–499.

L. Wu and H. Xie, “A scanning micromirror with stationary rotation axis and dual reflective surfaces for 360° forward-view endoscopic imaging,” in Proceedings of 15th International Conf. Solid-State, Actuators and Microsystems. (Transducers, Denver, CO, USA, 2009), pp. 2222–2225.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the mechanism of circumferential scanning by proposed compact MEMS micro-platform based OCT probe.

Fig. 2
Fig. 2

(a). Working principle of a single-stage chevron-beam pair, (b) working principle of the proposed cascaded two-stage chevron-beam electrothermal microactuator, (c) the micro-pyramidal polygon reflector.

Fig. 3
Fig. 3

(a). The pre-bending angle of the primary unit chevron beam and its displacement relationship curve; (b) the amplified displacement and the pre-bending angle of the secondary chevron beam relationship curve predicted by FEA and the theoretical amplified displacement and the pre-bending angle of the secondary chevron beam relationship curve without considering beam stiffness.

Fig. 4
Fig. 4

FEM simulation results on the displacement of the cascaded chevron beam based microactuator.

Fig. 5
Fig. 5

Fabrication process flow of micro-pyramidal polygon reflector: (a) SOI wafer; (b) backside 2 μm oxide deposition; (c) backside PR patterning followed by 280 μm Si DRIE; (d) PR strip and backside 1 μm oxide etch; (e) 300 Å oxide and 1500 Å Nitride deposition on both sides; (f) backside patterning followed by oxide etch, (g) backside 400 μm deep Si etch by KOH, (h) backside Cr/Au deposition using E-beam evaporation, (i) front side 300 Å oxide and 1000 Å Nitride etch followed by 1 μm oxide deposition, (j) front side 80 μm Si DRIE, (k)5000 Å oxide deposition on front side followed by PR patterning (l) front side 5000 Å oxide etch, (m) front side 70 μm Si DRIE (n) front side 1 μm Oxide etch to release the structure.

Fig. 6
Fig. 6

(a). Optical image of the compensation structure at the convex corner (has been almost etched away); (b) schematic illustration of a corner compensation structure design on mask.

Fig. 7
Fig. 7

Fabrication process flow of the MEMS cascaded chevron-beam microactuator: (a) 80 μm device layer SOI wafer; (b) front-side 1 μm oxide front-side deposition using PECVD ; (c) 3.5 μm PR deposition and patterning followed by 1 μm front-side oxide etch; (d) front-side PR patterning followed by 70 μm Silicon DRIE; (e) 20 μm dry film coating and patterning followed by 1 μm gold E-beam evaporation; (f) gold layer lift-off followed by 2 μm oxide deposition on the backside of the wafer; (g) front-side 2000 Å oxide deposition and patterning to cover Au pad; (h) backside 10 μm PR patterning followed by 2 μm oxide etch; (i) backside 620 μm Si DRIE; (j) PR stripping and front-side blue tape coating followed by wafer dicing process; (k) chip-level backside 30 μm silicon etch stopping at buried oxide layer (BOX) (l) backside 1 μm oxide etch, (m) front-side 10 μm silicon etch (n) front-side 2000 Å oxide etch.

Fig. 8
Fig. 8

Scanning Electron Microscope (SEM) images of (a) the micro-pyramidal polygon reflector and connection pillar and (b) the MEMS two-stage cascaded chevron-beam microactuator.

Fig. 9
Fig. 9

Setup for the MEMS microactuator and the micro-pyramidal polygon reflector assembly (a) three-axis precision positioning stage, (b) vernier caliper tip for holding the MEMS chip, (c) zoom-in view of backside of the MEMS chip.

Fig. 10
Fig. 10

Scanning Electron Microscope (SEM) image and optical image of the assembled MEMS micro-platform.

Fig. 11
Fig. 11

(a) The current-voltage and current-optical scan angle relationship curves (b) step response (1 V-2 V) of the chevron-beam based electrothermal MEMS micro-platform.

Fig. 12
Fig. 12

(a) Stationary laser spots projected on a cylindrical (b) projected scan lines when the device is driven by a 6 Vpp sinusoidal voltage input of 10 Hz (the fourth scan line is blocked by the screen due to the limitation of the camera shooting angle).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

We have x 2 + y 2 = L 2 2xdx+2ydy=0 dy= x y dx dy dx =cotθ

Metrics