Abstract

We present a numerical study of interactions between dispersive waves (DWs) and solitons during supercontinuum generation in photonic crystal fibers pumped with picosecond laser pulses. We show how the soliton-induced trapping potential evolves along the fiber and affects the dynamics of a DW-soliton pair. Individual frequency components of the DW periodically interact with the soliton resulting in stepwise frequency blue shifts. In contrast, the ensemble blue shifts of all frequency components in the DW appear to be quasi-continuous. The step size of frequency up-conversion and the temporal separation between subsequent soliton-DW interactions are governed by the potential well which confines the soliton-DW pair and which changes in time.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [CrossRef] [PubMed]
  4. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [CrossRef] [PubMed]
  5. S. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
    [CrossRef]
  6. J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007), http://www.opticsinfobase.org/abstract.cfm?id=141022 .
    [CrossRef] [PubMed]
  7. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-14-10178 .
    [CrossRef] [PubMed]
  8. S. S. Kiwanuka, T. K. Laurila, and C. F. Kaminski, “Sensitive method for the kinetic measurement of trace species in liquids using cavity enhanced absorption spectroscopy with broad bandwidth supercontinuum radiation,” Anal. Chem. 82(17), 7498–7501 (2010).
    [CrossRef] [PubMed]
  9. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [CrossRef] [PubMed]
  10. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
    [CrossRef] [PubMed]
  11. S. Schlachter, S. Schwedler, A. Esposito, G. S. Kaminski Schierle, G. D. Moggridge, and C. F. Kaminski, “A method to unmix multiple fluorophores in microscopy images with minimal a priori information,” Opt. Express 17(25), 22747–22760 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-25-22747 .
    [CrossRef] [PubMed]
  12. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
    [CrossRef] [PubMed]
  13. C. Liu, E. J. Rees, T. K. Laurila, S. Jian, and C. F. Kaminski, “An adaptive filter for studying the life cycle of optical rogue waves,” Opt. Express 18(25), 26113–26122 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-25-26113 .
    [CrossRef] [PubMed]
  14. D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
    [CrossRef]
  15. A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14(21), 9854–9863 (2006), http://www.opticsinfobase.org/abstract.cfm?id=116387 .
    [CrossRef] [PubMed]
  16. A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76(5), 053803 (2007).
    [CrossRef]
  17. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
    [CrossRef]
  18. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  19. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
    [CrossRef] [PubMed]
  20. R. Driben, F. Mitschke, and N. Zhavoronkov, “Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation,” Opt. Express 18(25), 25993–25998 (2010).
    [CrossRef] [PubMed]
  21. A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
    [CrossRef] [PubMed]
  22. L. Gagnon and P. A. Bélanger, “Soliton self-frequency shift versus Galilean-like symmetry,” Opt. Lett. 15(9), 466–468 (1990).
    [CrossRef] [PubMed]
  23. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37(3), 546–550 (1998).
    [CrossRef] [PubMed]
  24. B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81(2-3), 337–342 (2005).
    [CrossRef]
  25. J. Hult, “A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25(12), 3770–3775 (2007).
    [CrossRef]
  26. A. M. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol. 27(18), 3984–3991 (2009).
    [CrossRef]
  27. S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13(18), 6912–6918 (2005), http://www.opticsinfobase.org/abstract.cfm?&id=85363 .
    [CrossRef] [PubMed]
  28. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
    [CrossRef]
  29. G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12(19), 4614–4624 (2004), http://www.opticsinfobase.org/abstract.cfm?id=81189 .
    [CrossRef] [PubMed]
  30. D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016619 (2005).
    [CrossRef] [PubMed]
  31. A. V. Gorbach and D. V. Skryabin, “Bouncing of a dispersive pulse on an accelerating soliton and stepwise frequency conversion in optical fibers,” Opt. Express 15(22), 14560–14565 (2007), http://www.opticsinfobase.org/abstract.cfm?id=144404 .
    [CrossRef] [PubMed]
  32. S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the supercontinuum-group-acceleration matching,” Opt. Lett. 36(6), 816–818 (2011).
    [CrossRef] [PubMed]
  33. A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett. 29(20), 2411–2413 (2004).
    [CrossRef] [PubMed]
  34. A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33(15), 1723–1725 (2008).
    [CrossRef] [PubMed]

2011 (2)

A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[CrossRef] [PubMed]

S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the supercontinuum-group-acceleration matching,” Opt. Lett. 36(6), 816–818 (2011).
[CrossRef] [PubMed]

2010 (5)

R. Driben, F. Mitschke, and N. Zhavoronkov, “Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation,” Opt. Express 18(25), 25993–25998 (2010).
[CrossRef] [PubMed]

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[CrossRef] [PubMed]

C. Liu, E. J. Rees, T. K. Laurila, S. Jian, and C. F. Kaminski, “An adaptive filter for studying the life cycle of optical rogue waves,” Opt. Express 18(25), 26113–26122 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-25-26113 .
[CrossRef] [PubMed]

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
[CrossRef]

S. S. Kiwanuka, T. K. Laurila, and C. F. Kaminski, “Sensitive method for the kinetic measurement of trace species in liquids using cavity enhanced absorption spectroscopy with broad bandwidth supercontinuum radiation,” Anal. Chem. 82(17), 7498–7501 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (2)

2007 (7)

2006 (3)

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14(21), 9854–9863 (2006), http://www.opticsinfobase.org/abstract.cfm?id=116387 .
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

S. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[CrossRef]

2005 (4)

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[CrossRef] [PubMed]

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81(2-3), 337–342 (2005).
[CrossRef]

S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13(18), 6912–6918 (2005), http://www.opticsinfobase.org/abstract.cfm?&id=85363 .
[CrossRef] [PubMed]

D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016619 (2005).
[CrossRef] [PubMed]

2004 (2)

2002 (2)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

2000 (1)

1998 (1)

1990 (1)

Adler, F.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[CrossRef] [PubMed]

Amiranashvili, Sh.

A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[CrossRef] [PubMed]

Ania-Castanon, J. D.

S. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[CrossRef]

Bang, O.

Bélanger, P. A.

Coen, S.

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81(2-3), 337–342 (2005).
[CrossRef]

Cossel, K. C.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[CrossRef] [PubMed]

Demircan, A.

A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[CrossRef] [PubMed]

Driben, R.

Dudley, J. M.

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81(2-3), 337–342 (2005).
[CrossRef]

Efimov, A.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[CrossRef] [PubMed]

Elder, A. D.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[CrossRef] [PubMed]

Ellingham, T. J.

S. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[CrossRef]

Esposito, A.

Frank, J. H.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[CrossRef] [PubMed]

Gagnon, L.

Genty, G.

Gorbach, A. V.

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76(5), 053803 (2007).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, “Bouncing of a dispersive pulse on an accelerating soliton and stepwise frequency conversion in optical fibers,” Opt. Express 15(22), 14560–14565 (2007), http://www.opticsinfobase.org/abstract.cfm?id=144404 .
[CrossRef] [PubMed]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14(21), 9854–9863 (2006), http://www.opticsinfobase.org/abstract.cfm?id=116387 .
[CrossRef] [PubMed]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Heidt, A. M.

Holzwarth, R.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hult, J.

Jeyasekharan, A. D.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[CrossRef] [PubMed]

Jian, S.

Joly, N.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[CrossRef] [PubMed]

Jones, R. L.

Judge, A.

Kaminski, C. F.

C. Liu, E. J. Rees, T. K. Laurila, S. Jian, and C. F. Kaminski, “An adaptive filter for studying the life cycle of optical rogue waves,” Opt. Express 18(25), 26113–26122 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-25-26113 .
[CrossRef] [PubMed]

S. S. Kiwanuka, T. K. Laurila, and C. F. Kaminski, “Sensitive method for the kinetic measurement of trace species in liquids using cavity enhanced absorption spectroscopy with broad bandwidth supercontinuum radiation,” Anal. Chem. 82(17), 7498–7501 (2010).
[CrossRef] [PubMed]

S. Schlachter, S. Schwedler, A. Esposito, G. S. Kaminski Schierle, G. D. Moggridge, and C. F. Kaminski, “A method to unmix multiple fluorophores in microscopy images with minimal a priori information,” Opt. Express 17(25), 22747–22760 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-25-22747 .
[CrossRef] [PubMed]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-14-10178 .
[CrossRef] [PubMed]

J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007), http://www.opticsinfobase.org/abstract.cfm?id=141022 .
[CrossRef] [PubMed]

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[CrossRef] [PubMed]

Kaminski Schierle, G. S.

Kibler, B.

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81(2-3), 337–342 (2005).
[CrossRef]

Kiwanuka, S. S.

S. S. Kiwanuka, T. K. Laurila, and C. F. Kaminski, “Sensitive method for the kinetic measurement of trace species in liquids using cavity enhanced absorption spectroscopy with broad bandwidth supercontinuum radiation,” Anal. Chem. 82(17), 7498–7501 (2010).
[CrossRef] [PubMed]

Knight, J. C.

Kobtsev, S. M.

S. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[CrossRef]

S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13(18), 6912–6918 (2005), http://www.opticsinfobase.org/abstract.cfm?&id=85363 .
[CrossRef] [PubMed]

Kukarin, S.

S. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[CrossRef]

Langridge, J. M.

Laurila, T.

Laurila, T. K.

C. Liu, E. J. Rees, T. K. Laurila, S. Jian, and C. F. Kaminski, “An adaptive filter for studying the life cycle of optical rogue waves,” Opt. Express 18(25), 26113–26122 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-25-26113 .
[CrossRef] [PubMed]

S. S. Kiwanuka, T. K. Laurila, and C. F. Kaminski, “Sensitive method for the kinetic measurement of trace species in liquids using cavity enhanced absorption spectroscopy with broad bandwidth supercontinuum radiation,” Anal. Chem. 82(17), 7498–7501 (2010).
[CrossRef] [PubMed]

Lehtonen, M.

Liu, C.

Ludvigsen, H.

Milam, D.

Mitschke, F.

Moggridge, G. D.

Omenetto, F. G.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[CrossRef] [PubMed]

Ranka, J. K.

Rees, E. J.

Russell, P.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[CrossRef] [PubMed]

Russell, P. St. J.

Schlachter, S.

Schwedler, S.

Skryabin, D. V.

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76(5), 053803 (2007).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, “Bouncing of a dispersive pulse on an accelerating soliton and stepwise frequency conversion in optical fibers,” Opt. Express 15(22), 14560–14565 (2007), http://www.opticsinfobase.org/abstract.cfm?id=144404 .
[CrossRef] [PubMed]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14(21), 9854–9863 (2006), http://www.opticsinfobase.org/abstract.cfm?id=116387 .
[CrossRef] [PubMed]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[CrossRef] [PubMed]

D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016619 (2005).
[CrossRef] [PubMed]

A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett. 29(20), 2411–2413 (2004).
[CrossRef] [PubMed]

Smirnov, S.

S. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[CrossRef]

Smirnov, S. V.

Sørensen, S. T.

Steinmeyer, G.

A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[CrossRef] [PubMed]

Stentz, A. J.

Stone, J. M.

Swartling, J.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[CrossRef] [PubMed]

Taylor, A. J.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[CrossRef] [PubMed]

Thomsen, C. L.

Thorpe, M. J.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[CrossRef] [PubMed]

Turitsyn, S. K.

S. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[CrossRef]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Udem, Th.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Venkitaraman, A. R.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[CrossRef] [PubMed]

Voronin, A. A.

Watt, R. S.

Windeler, R. S.

Ye, J.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[CrossRef] [PubMed]

Yulin, A. V.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[CrossRef] [PubMed]

D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016619 (2005).
[CrossRef] [PubMed]

A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett. 29(20), 2411–2413 (2004).
[CrossRef] [PubMed]

Zhavoronkov, N.

Zheltikov, A. M.

Anal. Chem. (1)

S. S. Kiwanuka, T. K. Laurila, and C. F. Kaminski, “Sensitive method for the kinetic measurement of trace species in liquids using cavity enhanced absorption spectroscopy with broad bandwidth supercontinuum radiation,” Anal. Chem. 82(17), 7498–7501 (2010).
[CrossRef] [PubMed]

Annu Rev Anal Chem (Palo Alto Calif) (1)

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81(2-3), 337–342 (2005).
[CrossRef]

J. Lightwave Technol. (2)

J. Microsc. (1)

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[CrossRef]

Nature (2)

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Opt. Express (9)

J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007), http://www.opticsinfobase.org/abstract.cfm?id=141022 .
[CrossRef] [PubMed]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-14-10178 .
[CrossRef] [PubMed]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14(21), 9854–9863 (2006), http://www.opticsinfobase.org/abstract.cfm?id=116387 .
[CrossRef] [PubMed]

C. Liu, E. J. Rees, T. K. Laurila, S. Jian, and C. F. Kaminski, “An adaptive filter for studying the life cycle of optical rogue waves,” Opt. Express 18(25), 26113–26122 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-25-26113 .
[CrossRef] [PubMed]

S. Schlachter, S. Schwedler, A. Esposito, G. S. Kaminski Schierle, G. D. Moggridge, and C. F. Kaminski, “A method to unmix multiple fluorophores in microscopy images with minimal a priori information,” Opt. Express 17(25), 22747–22760 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-25-22747 .
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12(19), 4614–4624 (2004), http://www.opticsinfobase.org/abstract.cfm?id=81189 .
[CrossRef] [PubMed]

A. V. Gorbach and D. V. Skryabin, “Bouncing of a dispersive pulse on an accelerating soliton and stepwise frequency conversion in optical fibers,” Opt. Express 15(22), 14560–14565 (2007), http://www.opticsinfobase.org/abstract.cfm?id=144404 .
[CrossRef] [PubMed]

S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13(18), 6912–6918 (2005), http://www.opticsinfobase.org/abstract.cfm?&id=85363 .
[CrossRef] [PubMed]

R. Driben, F. Mitschke, and N. Zhavoronkov, “Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation,” Opt. Express 18(25), 25993–25998 (2010).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

S. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. A (1)

A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76(5), 053803 (2007).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016619 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[CrossRef] [PubMed]

A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[CrossRef] [PubMed]

Rev. Mod. Phys. (2)

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Other (2)

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Supplementary Material (2)

» Media 1: MOV (227 KB)     
» Media 2: MOV (562 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Supercontinuum generation is shown by spectrograms at three different fiber lengths: (a) 29 m, (b) 36 m, (c) 40 m. The first soliton is indicated by an ellipse (dotted), and the corresponding DW by a rectangle, in the spectrograms and (d-f) in the time domain. The arc (dashed) illustrates how the DW first collides with the soliton and then gets reflected back. The phenomenon is also presented as an animation (Media 1).

Fig. 2
Fig. 2

Weighted average frequency (red line) and frequency of the peak intensity component of the DW as a function of propagation distance in the fiber.

Fig. 3
Fig. 3

Magnified views of the first appearing DW: (a) before collision with the soliton, (b) DW in collision with the soliton, (c) after collision; (d) 3D plot of the trapped DW at 36 m (also presented as an animation in online Media 2). (e) Spectrogram at 100 m propagation distance. (f) DW in a weak trapping state at 100 m.

Fig. 4
Fig. 4

(a) Potential barrier U as a function of the fiber length between 20 m and 100 m fiber length. (b) Diagram of the DW trapped in the potential well at 29 m and 100 m fiber lengths.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A z k0 i k+1 k! β k k A t k =iγ(1+i τ shock t )( A(z,t) + R(t') | A(z,tt') | 2 dt' )
γ(ω)= n 2 (ω)ω c A eff (ω)
ω DW (z) = ω a ω b ω | A DW (ω,z) | 2 dω ω a ω b | A DW (ω,z) | 2 dω
U= U S + U L =2γP[1+ τ R T tanh( τ T )] 4 τ R γ 2 P 0 15 β 2 τ

Metrics