Abstract

We report on the fabrication of 2-D photonic crystal (PC) micro-mirrors, and Finite Difference Time Domain (FDTD) simulations and measurements of their reflectance spectra and polarization dependence at normal incidence. The PC mirrors were fabricated in free-standing thin polysilicon membranes supported by silicon nitride films for stress compensation. Greater than 90% reflectivity is measured over a wavelength range of 35 nm from 1565 nm to 1600 nm with small polarization dependence. Our FDTD simulations show that fabrication errors on the order of tens of nanometers can strongly affect the reflection spectra. When the fabrication errors are kept below this level, FDTD simulations on perfectly periodic structures accurately predict the reflection spectra of the fabricated PC mirrors, despite their sensitivity to the fabrication errors.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun.55(6), 377–380 (1985).
    [CrossRef]
  2. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett.23(19), 1556–1558 (1998).
    [CrossRef] [PubMed]
  3. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
    [CrossRef]
  4. J. Jiang and G. P. Nordin, “Optimal design of sub-wavelength dielectric gratings as broadband mirrors,” OFC/NFEC ’05, Anaheim, USA (2005).
  5. S. Peng and G. M. Morris, “Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,” Opt. Lett.21(8), 549–551 (1996).
    [CrossRef] [PubMed]
  6. W. Suh, M. F. Yanik, O. Solgaard, and S.-H. Fan, “Displacement-Sensitive Photonic Crystal Structures Based on Guided Resonance in Photonic Crystal Slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
    [CrossRef]
  7. O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express16(17), 13090–13103 (2008).
    [CrossRef] [PubMed]
  8. I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009).
    [CrossRef]
  9. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
    [CrossRef] [PubMed]
  10. A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000).
    [CrossRef]
  11. J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, and A. H. Heuer, “A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process,” J. Microelectromech. Syst.9(4), 485–494 (2000).
    [CrossRef]
  12. S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express14(8), 3129–3137 (2006).
    [CrossRef] [PubMed]
  13. J. H. Ho, C. L. Lee, T. F. Lei, and T. S. Chao, “Ellipsometry measurement of the complex refractive index and thickness of polysilicon thin films,” J. Opt. Soc. Am. A7(2), 196–205 (1990).
    [CrossRef]
  14. J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andres, and M. V. Andres, “Sloped-wall thin-film photonic crystal waveguides,” IEEE Photon. Technol. Lett.17(2), 354–356, 354–356 (2005).
    [CrossRef]
  15. J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express17(15), 12470–12480 (2009).
    [CrossRef] [PubMed]
  16. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
    [CrossRef]
  17. B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
    [CrossRef]
  18. D. M. Beggs, L. O'Faolain, and T. F. Krauss, “Accurate determination of the functional hole size in photonic crystal slabs using optical methods,” Photonics Nanostruct. Fundamentals Appl.6(3–4), 213–218 (2008).
    [CrossRef]
  19. E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006).
    [CrossRef]
  20. S. Fan and J. D. Joannopoloulos, “Analysis of guided resonance in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
    [CrossRef]

2009

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009).
[CrossRef]

J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express17(15), 12470–12480 (2009).
[CrossRef] [PubMed]

2008

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

D. M. Beggs, L. O'Faolain, and T. F. Krauss, “Accurate determination of the functional hole size in photonic crystal slabs using optical methods,” Photonics Nanostruct. Fundamentals Appl.6(3–4), 213–218 (2008).
[CrossRef]

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express16(17), 13090–13103 (2008).
[CrossRef] [PubMed]

2007

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

2006

E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006).
[CrossRef]

S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express14(8), 3129–3137 (2006).
[CrossRef] [PubMed]

2005

J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andres, and M. V. Andres, “Sloped-wall thin-film photonic crystal waveguides,” IEEE Photon. Technol. Lett.17(2), 354–356, 354–356 (2005).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

2004

2003

W. Suh, M. F. Yanik, O. Solgaard, and S.-H. Fan, “Displacement-Sensitive Photonic Crystal Structures Based on Guided Resonance in Photonic Crystal Slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
[CrossRef]

2002

S. Fan and J. D. Joannopoloulos, “Analysis of guided resonance in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

2000

A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000).
[CrossRef]

J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, and A. H. Heuer, “A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process,” J. Microelectromech. Syst.9(4), 485–494 (2000).
[CrossRef]

1998

1996

1990

1985

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun.55(6), 377–380 (1985).
[CrossRef]

Andres, M. V.

J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andres, and M. V. Andres, “Sloped-wall thin-film photonic crystal waveguides,” IEEE Photon. Technol. Lett.17(2), 354–356, 354–356 (2005).
[CrossRef]

Andres, P.

J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andres, and M. V. Andres, “Sloped-wall thin-film photonic crystal waveguides,” IEEE Photon. Technol. Lett.17(2), 354–356, 354–356 (2005).
[CrossRef]

Asano, T.

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

Atature, M.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

Badolato, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

Beggs, D. M.

D. M. Beggs, L. O'Faolain, and T. F. Krauss, “Accurate determination of the functional hole size in photonic crystal slabs using optical methods,” Photonics Nanostruct. Fundamentals Appl.6(3–4), 213–218 (2008).
[CrossRef]

Ben Bakir, B.

Boutami, S.

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Chao, T. S.

Crescimanno, M.

Digonnet, M.

Dreiser, J.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

Dunham, S. N.

E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006).
[CrossRef]

Fan, S.

Fan, S.-H.

W. Suh, M. F. Yanik, O. Solgaard, and S.-H. Fan, “Displacement-Sensitive Photonic Crystal Structures Based on Guided Resonance in Photonic Crystal Slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
[CrossRef]

Ferrando, A.

J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andres, and M. V. Andres, “Sloped-wall thin-film photonic crystal waveguides,” IEEE Photon. Technol. Lett.17(2), 354–356, 354–356 (2005).
[CrossRef]

Gaillot, D. P.

E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006).
[CrossRef]

Garrigues, M.

Graugnard, E.

E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006).
[CrossRef]

He, A.-Q.

J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, and A. H. Heuer, “A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process,” J. Microelectromech. Syst.9(4), 485–494 (2000).
[CrossRef]

Hennessy, K.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

Heuer, A. H.

J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, and A. H. Heuer, “A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process,” J. Microelectromech. Syst.9(4), 485–494 (2000).
[CrossRef]

Hietanen, J.

A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000).
[CrossRef]

Ho, J. H.

Hu, E.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Ilic, R.

Imamoglu, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

Joannopoloulos, J. D.

S. Fan and J. D. Joannopoloulos, “Analysis of guided resonance in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Jung, I. W.

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009).
[CrossRef]

Kahn, H.

J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, and A. H. Heuer, “A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process,” J. Microelectromech. Syst.9(4), 485–494 (2000).
[CrossRef]

Kilic, O.

Kim, S.

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009).
[CrossRef]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

Kino, G.

Krauss, T. F.

D. M. Beggs, L. O'Faolain, and T. F. Krauss, “Accurate determination of the functional hole size in photonic crystal slabs using optical methods,” Photonics Nanostruct. Fundamentals Appl.6(3–4), 213–218 (2008).
[CrossRef]

Leclercq, J.-L.

Lee, C. L.

Legratiet, L.

Lei, T. F.

Letartre, X.

Liu, Z. S.

Lousse, V.

Magnusson, R.

Mashev, L.

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun.55(6), 377–380 (1985).
[CrossRef]

Monsoriu, J. A.

J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andres, and M. V. Andres, “Sloped-wall thin-film photonic crystal waveguides,” IEEE Photon. Technol. Lett.17(2), 354–356, 354–356 (2005).
[CrossRef]

Morris, G. M.

Nagashima, T.

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

Neff, C. W.

E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006).
[CrossRef]

Noda, S.

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

O'Faolain, L.

D. M. Beggs, L. O'Faolain, and T. F. Krauss, “Accurate determination of the functional hole size in photonic crystal slabs using optical methods,” Photonics Nanostruct. Fundamentals Appl.6(3–4), 213–218 (2008).
[CrossRef]

Peng, S.

Petroff, P. M.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

Phillips, S. M.

J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, and A. H. Heuer, “A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process,” J. Microelectromech. Syst.9(4), 485–494 (2000).
[CrossRef]

Popov, E.

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun.55(6), 377–380 (1985).
[CrossRef]

Rojo-Romeo, P.

Rusanen, O.

A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000).
[CrossRef]

Saarilahti, J.

A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000).
[CrossRef]

Sagnes, I.

Seppa, H.

A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000).
[CrossRef]

Shin, D.

Silvestre, E.

J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andres, and M. V. Andres, “Sloped-wall thin-film photonic crystal waveguides,” IEEE Photon. Technol. Lett.17(2), 354–356, 354–356 (2005).
[CrossRef]

Sipola, H.

A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000).
[CrossRef]

Solgaard, O.

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009).
[CrossRef]

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express16(17), 13090–13103 (2008).
[CrossRef] [PubMed]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

W. Suh, M. F. Yanik, O. Solgaard, and S.-H. Fan, “Displacement-Sensitive Photonic Crystal Structures Based on Guided Resonance in Photonic Crystal Slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
[CrossRef]

Song, B.-S.

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

Strassner, M.

Suh, W.

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

W. Suh, M. F. Yanik, O. Solgaard, and S.-H. Fan, “Displacement-Sensitive Photonic Crystal Structures Based on Guided Resonance in Photonic Crystal Slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
[CrossRef]

Summers, C. J.

E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006).
[CrossRef]

Tamboli, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

Tibuleac, S.

Topolancik, J.

Torkkeli, A.

A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000).
[CrossRef]

Viktorovitch, P.

Vollmer, F.

Yamashita, T.

E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006).
[CrossRef]

Yang, J.

J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, and A. H. Heuer, “A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process,” J. Microelectromech. Syst.9(4), 485–494 (2000).
[CrossRef]

Yanik, M. F.

W. Suh, M. F. Yanik, O. Solgaard, and S.-H. Fan, “Displacement-Sensitive Photonic Crystal Structures Based on Guided Resonance in Photonic Crystal Slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
[CrossRef]

Young, P. P.

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Appl. Phys. Lett.

W. Suh, M. F. Yanik, O. Solgaard, and S.-H. Fan, “Displacement-Sensitive Photonic Crystal Structures Based on Guided Resonance in Photonic Crystal Slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andres, and M. V. Andres, “Sloped-wall thin-film photonic crystal waveguides,” IEEE Photon. Technol. Lett.17(2), 354–356, 354–356 (2005).
[CrossRef]

J. Microelectromech. Syst.

J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, and A. H. Heuer, “A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process,” J. Microelectromech. Syst.9(4), 485–494 (2000).
[CrossRef]

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009).
[CrossRef]

J. Opt. Soc. Am. A

Nat. Photonics

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Opt. Commun.

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun.55(6), 377–380 (1985).
[CrossRef]

Opt. Express

Opt. Lett.

Photonics Nanostruct. Fundamentals Appl.

D. M. Beggs, L. O'Faolain, and T. F. Krauss, “Accurate determination of the functional hole size in photonic crystal slabs using optical methods,” Photonics Nanostruct. Fundamentals Appl.6(3–4), 213–218 (2008).
[CrossRef]

Phys. Rev. B

S. Fan and J. D. Joannopoloulos, “Analysis of guided resonance in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Sens. Actuators A Phys.

A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000).
[CrossRef]

Other

J. Jiang and G. P. Nordin, “Optimal design of sub-wavelength dielectric gratings as broadband mirrors,” OFC/NFEC ’05, Anaheim, USA (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics