Abstract

We report on the fabrication of 2-D photonic crystal (PC) micro-mirrors, and Finite Difference Time Domain (FDTD) simulations and measurements of their reflectance spectra and polarization dependence at normal incidence. The PC mirrors were fabricated in free-standing thin polysilicon membranes supported by silicon nitride films for stress compensation. Greater than 90% reflectivity is measured over a wavelength range of 35 nm from 1565 nm to 1600 nm with small polarization dependence. Our FDTD simulations show that fabrication errors on the order of tens of nanometers can strongly affect the reflection spectra. When the fabrication errors are kept below this level, FDTD simulations on perfectly periodic structures accurately predict the reflection spectra of the fabricated PC mirrors, despite their sensitivity to the fabrication errors.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun.55(6), 377–380 (1985).
    [CrossRef]
  2. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett.23(19), 1556–1558 (1998).
    [CrossRef] [PubMed]
  3. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
    [CrossRef]
  4. J. Jiang and G. P. Nordin, “Optimal design of sub-wavelength dielectric gratings as broadband mirrors,” OFC/NFEC ’05, Anaheim, USA (2005).
  5. S. Peng and G. M. Morris, “Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,” Opt. Lett.21(8), 549–551 (1996).
    [CrossRef] [PubMed]
  6. W. Suh, M. F. Yanik, O. Solgaard, and S.-H. Fan, “Displacement-Sensitive Photonic Crystal Structures Based on Guided Resonance in Photonic Crystal Slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
    [CrossRef]
  7. O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express16(17), 13090–13103 (2008).
    [CrossRef] [PubMed]
  8. I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009).
    [CrossRef]
  9. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
    [CrossRef] [PubMed]
  10. A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000).
    [CrossRef]
  11. J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, and A. H. Heuer, “A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process,” J. Microelectromech. Syst.9(4), 485–494 (2000).
    [CrossRef]
  12. S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express14(8), 3129–3137 (2006).
    [CrossRef] [PubMed]
  13. J. H. Ho, C. L. Lee, T. F. Lei, and T. S. Chao, “Ellipsometry measurement of the complex refractive index and thickness of polysilicon thin films,” J. Opt. Soc. Am. A7(2), 196–205 (1990).
    [CrossRef]
  14. J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andres, and M. V. Andres, “Sloped-wall thin-film photonic crystal waveguides,” IEEE Photon. Technol. Lett.17(2), 354–356, 354–356 (2005).
    [CrossRef]
  15. J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express17(15), 12470–12480 (2009).
    [CrossRef] [PubMed]
  16. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
    [CrossRef]
  17. B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
    [CrossRef]
  18. D. M. Beggs, L. O'Faolain, and T. F. Krauss, “Accurate determination of the functional hole size in photonic crystal slabs using optical methods,” Photonics Nanostruct. Fundamentals Appl.6(3–4), 213–218 (2008).
    [CrossRef]
  19. E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006).
    [CrossRef]
  20. S. Fan and J. D. Joannopoloulos, “Analysis of guided resonance in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
    [CrossRef]

2009

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009).
[CrossRef]

J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express17(15), 12470–12480 (2009).
[CrossRef] [PubMed]

2008

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

D. M. Beggs, L. O'Faolain, and T. F. Krauss, “Accurate determination of the functional hole size in photonic crystal slabs using optical methods,” Photonics Nanostruct. Fundamentals Appl.6(3–4), 213–218 (2008).
[CrossRef]

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express16(17), 13090–13103 (2008).
[CrossRef] [PubMed]

2007

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

2006

E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006).
[CrossRef]

S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express14(8), 3129–3137 (2006).
[CrossRef] [PubMed]

2005

J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andres, and M. V. Andres, “Sloped-wall thin-film photonic crystal waveguides,” IEEE Photon. Technol. Lett.17(2), 354–356, 354–356 (2005).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

2004

2003

W. Suh, M. F. Yanik, O. Solgaard, and S.-H. Fan, “Displacement-Sensitive Photonic Crystal Structures Based on Guided Resonance in Photonic Crystal Slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
[CrossRef]

2002

S. Fan and J. D. Joannopoloulos, “Analysis of guided resonance in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

2000

A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000).
[CrossRef]

J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, and A. H. Heuer, “A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process,” J. Microelectromech. Syst.9(4), 485–494 (2000).
[CrossRef]

1998

1996

1990

1985

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun.55(6), 377–380 (1985).
[CrossRef]

Andres, M. V.

J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andres, and M. V. Andres, “Sloped-wall thin-film photonic crystal waveguides,” IEEE Photon. Technol. Lett.17(2), 354–356, 354–356 (2005).
[CrossRef]

Andres, P.

J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andres, and M. V. Andres, “Sloped-wall thin-film photonic crystal waveguides,” IEEE Photon. Technol. Lett.17(2), 354–356, 354–356 (2005).
[CrossRef]

Asano, T.

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

Atature, M.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

Badolato, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

Beggs, D. M.

D. M. Beggs, L. O'Faolain, and T. F. Krauss, “Accurate determination of the functional hole size in photonic crystal slabs using optical methods,” Photonics Nanostruct. Fundamentals Appl.6(3–4), 213–218 (2008).
[CrossRef]

Ben Bakir, B.

Boutami, S.

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Chao, T. S.

Crescimanno, M.

Digonnet, M.

Dreiser, J.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

Dunham, S. N.

E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006).
[CrossRef]

Fan, S.

Fan, S.-H.

W. Suh, M. F. Yanik, O. Solgaard, and S.-H. Fan, “Displacement-Sensitive Photonic Crystal Structures Based on Guided Resonance in Photonic Crystal Slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
[CrossRef]

Ferrando, A.

J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andres, and M. V. Andres, “Sloped-wall thin-film photonic crystal waveguides,” IEEE Photon. Technol. Lett.17(2), 354–356, 354–356 (2005).
[CrossRef]

Gaillot, D. P.

E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006).
[CrossRef]

Garrigues, M.

Graugnard, E.

E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006).
[CrossRef]

He, A.-Q.

J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, and A. H. Heuer, “A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process,” J. Microelectromech. Syst.9(4), 485–494 (2000).
[CrossRef]

Hennessy, K.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

Heuer, A. H.

J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, and A. H. Heuer, “A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process,” J. Microelectromech. Syst.9(4), 485–494 (2000).
[CrossRef]

Hietanen, J.

A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000).
[CrossRef]

Ho, J. H.

Hu, E.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Ilic, R.

Imamoglu, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

Joannopoloulos, J. D.

S. Fan and J. D. Joannopoloulos, “Analysis of guided resonance in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Jung, I. W.

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009).
[CrossRef]

Kahn, H.

J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, and A. H. Heuer, “A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process,” J. Microelectromech. Syst.9(4), 485–494 (2000).
[CrossRef]

Kilic, O.

Kim, S.

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009).
[CrossRef]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

Kino, G.

Krauss, T. F.

D. M. Beggs, L. O'Faolain, and T. F. Krauss, “Accurate determination of the functional hole size in photonic crystal slabs using optical methods,” Photonics Nanostruct. Fundamentals Appl.6(3–4), 213–218 (2008).
[CrossRef]

Leclercq, J.-L.

Lee, C. L.

Legratiet, L.

Lei, T. F.

Letartre, X.

Liu, Z. S.

Lousse, V.

Magnusson, R.

Mashev, L.

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun.55(6), 377–380 (1985).
[CrossRef]

Monsoriu, J. A.

J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andres, and M. V. Andres, “Sloped-wall thin-film photonic crystal waveguides,” IEEE Photon. Technol. Lett.17(2), 354–356, 354–356 (2005).
[CrossRef]

Morris, G. M.

Nagashima, T.

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

Neff, C. W.

E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006).
[CrossRef]

Noda, S.

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

O'Faolain, L.

D. M. Beggs, L. O'Faolain, and T. F. Krauss, “Accurate determination of the functional hole size in photonic crystal slabs using optical methods,” Photonics Nanostruct. Fundamentals Appl.6(3–4), 213–218 (2008).
[CrossRef]

Peng, S.

Petroff, P. M.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

Phillips, S. M.

J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, and A. H. Heuer, “A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process,” J. Microelectromech. Syst.9(4), 485–494 (2000).
[CrossRef]

Popov, E.

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun.55(6), 377–380 (1985).
[CrossRef]

Rojo-Romeo, P.

Rusanen, O.

A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000).
[CrossRef]

Saarilahti, J.

A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000).
[CrossRef]

Sagnes, I.

Seppa, H.

A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000).
[CrossRef]

Shin, D.

Silvestre, E.

J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andres, and M. V. Andres, “Sloped-wall thin-film photonic crystal waveguides,” IEEE Photon. Technol. Lett.17(2), 354–356, 354–356 (2005).
[CrossRef]

Sipola, H.

A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000).
[CrossRef]

Solgaard, O.

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009).
[CrossRef]

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express16(17), 13090–13103 (2008).
[CrossRef] [PubMed]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

W. Suh, M. F. Yanik, O. Solgaard, and S.-H. Fan, “Displacement-Sensitive Photonic Crystal Structures Based on Guided Resonance in Photonic Crystal Slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
[CrossRef]

Song, B.-S.

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

Strassner, M.

Suh, W.

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

W. Suh, M. F. Yanik, O. Solgaard, and S.-H. Fan, “Displacement-Sensitive Photonic Crystal Structures Based on Guided Resonance in Photonic Crystal Slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
[CrossRef]

Summers, C. J.

E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006).
[CrossRef]

Tamboli, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

Tibuleac, S.

Topolancik, J.

Torkkeli, A.

A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000).
[CrossRef]

Viktorovitch, P.

Vollmer, F.

Yamashita, T.

E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006).
[CrossRef]

Yang, J.

J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, and A. H. Heuer, “A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process,” J. Microelectromech. Syst.9(4), 485–494 (2000).
[CrossRef]

Yanik, M. F.

W. Suh, M. F. Yanik, O. Solgaard, and S.-H. Fan, “Displacement-Sensitive Photonic Crystal Structures Based on Guided Resonance in Photonic Crystal Slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
[CrossRef]

Young, P. P.

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Appl. Phys. Lett.

W. Suh, M. F. Yanik, O. Solgaard, and S.-H. Fan, “Displacement-Sensitive Photonic Crystal Structures Based on Guided Resonance in Photonic Crystal Slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett.87(2), 021108 (2005).
[CrossRef]

E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, “Photonic band tuning in two-dimensional photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett.89(18), 181108 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andres, and M. V. Andres, “Sloped-wall thin-film photonic crystal waveguides,” IEEE Photon. Technol. Lett.17(2), 354–356, 354–356 (2005).
[CrossRef]

J. Microelectromech. Syst.

J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, and A. H. Heuer, “A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process,” J. Microelectromech. Syst.9(4), 485–494 (2000).
[CrossRef]

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009).
[CrossRef]

J. Opt. Soc. Am. A

Nat. Photonics

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Opt. Commun.

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun.55(6), 377–380 (1985).
[CrossRef]

Opt. Express

Opt. Lett.

Photonics Nanostruct. Fundamentals Appl.

D. M. Beggs, L. O'Faolain, and T. F. Krauss, “Accurate determination of the functional hole size in photonic crystal slabs using optical methods,” Photonics Nanostruct. Fundamentals Appl.6(3–4), 213–218 (2008).
[CrossRef]

Phys. Rev. B

S. Fan and J. D. Joannopoloulos, “Analysis of guided resonance in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Sens. Actuators A Phys.

A. Torkkeli, O. Rusanen, J. Saarilahti, H. Seppa, H. Sipola, and J. Hietanen, “Capacitive microphone with low-stress polysilicon membrane and high-stress polysilicon backplate,” Sens. Actuators A Phys.85(1–3), 116–123 (2000).
[CrossRef]

Other

J. Jiang and G. P. Nordin, “Optimal design of sub-wavelength dielectric gratings as broadband mirrors,” OFC/NFEC ’05, Anaheim, USA (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) The broadband polysilicon 2-D PC mirror has a square lattice of circular holes with a pitch of 820 nm and a radius of 328 nm. These holes are patterned on a 90 nm thick nitride film and a 450 nm thick polysilicon membrane, which are suspended 920 nm above a silicon substrate. The nitride film is deposited on top of the polysilicon membrane for stress compensation. In our study, we measure the reflection spectrum of the 2-D PC mirror for normal incidence as indicated in the figure by arrows. (b) FDTD-calculated reflection spectra of the PC mirror (solid) and homogeneous thin films of nitride and polysilicon above a silicon substrate without PC holes (dashed) for normal incidence. Both structures have the same thicknesses of nitride and polysilicon films and an air gap above the silicon substrate. The reflectivity of the PC mirror is higher than 95% from 1490 nm to 1568 nm due to the effect of the periodic PC holes patterned though the thin films on the reflection of the PC mirror.

Fig. 2
Fig. 2

FDTD-calculated reflection spectra of 2-D PC mirrors, for three different mirror structures. The calculations were done for a free-standing polysilicon membrane, for a membrane with an additional nitride film, and for a composite membrane over a silicon substrate like the structure shown in Fig. 1 (a). The black solid line is a reflection spectrum of a 2-D PC mirror consisting of a square lattice of circular holes with a pitch of 820 nm and a radius of 328 nm. These circular holes are patterned in a free-standing 450 nm thick silicon membrane. This 2-D PC mirror achieves 100% reflectivity at 1550 nm and 95% reflectivity from 1500 nm to 1560 nm. The black dotted line is a reflection spectrum of a 2-D PC mirror of the same structure except for having an additional 90 nm thick nitride film on top of the free-standing silicon membrane. The reflectivity at 1550 nm is still 100%, but the reflectivities at wavelengths lower 1550 nm decreases, reducing the bandwidth of the spectrum with 95% reflectivity. A silicon substrate under the PC membrane with a 920 nm thick air-gap between them increases the bandwidth. (Black dashed line) The reflectivity is higher than 95% at wavelengths from 1490 nm to 1568 nm.

Fig. 3
Fig. 3

Fabrication of broadband polysilicon PC mirrors. (1) A silicon wafer is thermally oxidized to define the gap between the PC membrane and the substrate. (2) Polysillicon and nitride layers are deposited on the oxide. These polysilicon and nitride layers compose the PC membrane. (3) PC holes are patterned in the polysilicon and nitride by ebeam lithography and reactive ion etching. (4) The oxide is removed under the PC in liquid Hydrofloric acid (HF), forming a gap between the PC membrane and the substrate.

Fig. 4
Fig. 4

SEM images of the fabricated broadband PC mirror. These pictures are taken before the oxide layer was removed by hydrofluoric acid etch. (a) Top view: square lattice of holes with 820 nm pitch and 672 nm diameter (b) Side view after wafer cleaving to see the profile of etched holes. From the top: 90nm nitride, 450 nm polysilicon, 920 nm oxide. The etch profiles are from a triangular-lattice PC with the same radius as the square lattice PC. A triangular lattice was chosen for imaging purposes to guarantee that a cleave would reveal the hole cross-section.

Fig. 5
Fig. 5

Schematic of the experimental setup to measure the reflectivity, polarization dependence, and angular dependence of the broadband polysilicon PC mirror. The input beam from an un-polarized broadband super luminescent diode light source is collimated by an objective lens (OL1), sent through a linear polarizer (P1) and beam splitters (BS1 and BS2), and focused onto the PC mirror by a lens L2. The reflected beam from the PC mirror is directed by BS2 and focused onto the single mode fiber connected to the optical spectrum analyzer. The beam splitter, BS1, helps in aligning the PC mirror to the focused beam by allowing an image of the PC mirror and the focused beam to be captured by the IR camera. P1 determines the polarization of the input beam.

Fig. 6
Fig. 6

Measured Reflection spectra for two orthogonal linear polarizations for normal incidence (dashed and dotted lines). The low, but non-zero, polarization dependence of the PC mirror at normal incidence is assumed to be due to fabrication imperfections. The reflectivity is higher than 90% from 1565 nm to 1600 nm.

Fig. 7
Fig. 7

(a) The comparison between the measured reflection spectra (dashed and dotted lines) and the FDTD calculated (solid line) reflection spectrum for the proposed design. It shows a significant discrepancy between the measurement and the calculation. (b) The FDTD calculation shows very good agreement with the measurement after incorporating the experimentally observed deviations from design in the fabricated device.

Fig. 8
Fig. 8

FDTD calculations of spectral reflectivity as a function of fabrication variations. Each fabrication variation is added to the PC model at each FDTD calculation. (a) The PC model is the same as the one used for the FDTD calculation in Fig. 1 (b) except the refractive index of the polysilicon layer. The actual polysilicon refractive index was 3.7, causing a red-shift of the reflection spectrum calculated for the original design as shown in Fig. 7 (a). (b) The increased radius of the PC holes was added to the PC model. The radius of the PC holes increased by 8nm after PMMA development and RIE etch, causing a blue-shift. (c) The sloped sidewalls of the PC holes were added to the PC model. The sloped sidewalls of the PC holes shifted the high reflectivity region to longer wavelengths. In the FDTD simulations, the PC model has a radius that is decreased step-wise from 336 nm to 295 nm in steps of 4.1 nm over the 450 nm thickness of the PC holes.

Metrics