Abstract

First principles calculations are performed for the perfect GaAs crystal, the double Ga vacancies (VGa)2, and the ternary complex defect (AsGaVAsVGa), using the state-of-the-art computational method with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional to correct the band gap and account for a proper description of the interaction between defects states and bulk states. Three shallow acceptor defect levels are found due to the creation of (VGa)2 with nearest-neighbor As dangling bonds. However, for GaAs with the ternary complex defects (AsGaVAsVGa), the As antisite AsGa and the VAs’s nearest-neighbor Ga dangling bonds provoke several donor defect states. The lowest donor defect state locates at 0.85 eV below the bottom of conduction band, which is very close to the experimental observation of the EL2 defect level. In addition, structual evolution from (VGa)2 defect to the ternary defect complex (AsGaVAsVGa) is simulated by ab initio molecular dynamic (MD) calculation at different temperatures. The MD results demonstrate that the ternary complex defect (AsGaVAsVGa) can be converted from the double Ga vacancies (VGa)2 at room temperature, and it can exist stably at higher temperature. The present work is helpful to unravel the microstructure and the forming mechanism of the EL2 defect, to find out methods to improve the performance of the GaAs saturable absorber by changing the growth conditions of GaAs crystal.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Zhang, L. Qian, D. Fan, and X. Deng, “Gallium arsenide: A new material to accomplish passively mode-locked Nd:YAG laser,” Appl. Phys. Lett. 60(4), 419–421 (1992).
    [CrossRef]
  2. T. T. Kajava and A. L. Gaeta, “Q-switching of a laser-pumped Nd:YAG laser with GaAs,” Opt. Lett. 21(16), 1244–1246 (1996).
    [CrossRef] [PubMed]
  3. . Gu, F. Zhou, K. T. Wan, T. K. Lim, S.-C. Tam, Y. L. Lam, D. Xu, and Z. Cheng, “Q-switching of a diode-pumped Nd:YVO4 laser with GaAs nonlinear output coupler,” Opt. Lasers Eng. 35(5), 299–307 (2001).
    [CrossRef]
  4. J. Gu, F. Zhou, W. Xie, S. C. Tam, and Y. L. Lam, “Passive Q-switching of a diode-pumped Nd:YAG laser with a GaAs output coupler,” Opt. Commun. 165(4-6), 245–249 (1999).
    [CrossRef]
  5. A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1μm,” IEEE J. Quantum Electron. 24(2), 289–303 (1988).
    [CrossRef]
  6. R. Williams, “Determination of Deep Centers in Conducting Gallium Arsenide,” J. Appl. Phys. 37(9), 3411–3416 (1966).
    [CrossRef]
  7. M. Kamińska, M. Skowronskii, and W. Kuszko, “Identification of the 0.82-eV Electron Trap, EL2 in GaAs, as an Isolated Antisite Arsenic Defect,” Phys. Rev. Lett. 55(20), 2204–2207 (1985).
    [CrossRef] [PubMed]
  8. M. Levinson and J. A. Kafalas, “Site symmetry of the EL2 center in GaAs,” Phys. Rev. B Condens. Matter 35(17), 9383–9386 (1987).
    [CrossRef] [PubMed]
  9. J. F. Wager and J. A. Van Vechten, “Atomic model for the EL2 defect in GaAs,” Phys. Rev. B Condens. Matter 35(5), 2330–2339 (1987).
    [CrossRef] [PubMed]
  10. H. von Bardeleben, D. Stiévenard, D. Deresmes, A. Huber, and J. Bourgoin; “Identification of a defect in a semiconductor: EL2 in GaAs,” Phys. Rev. B Condens. Matter 34(10), 7192–7202 (1986).
    [CrossRef] [PubMed]
  11. Y. X. Zou and G. Y. Wang, “Comment on “atomic model for the EL2 defect in GaAs,” Phys. Rev. B 36, 10953–10955 (1988).
  12. J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, “Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional,” J. Chem. Phys. 123(17), 174101 (2005).
    [CrossRef] [PubMed]
  13. G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
    [CrossRef]
  14. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
    [CrossRef] [PubMed]
  15. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).
    [CrossRef] [PubMed]
  16. G. Kresse and J. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
    [CrossRef]
  17. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
    [CrossRef] [PubMed]
  18. J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8219 (2003).
    [CrossRef]
  19. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals,” J. Chem. Phys. 125(22), 224106 (2006).
    [CrossRef] [PubMed]
  20. L. Verlet, “Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. 159(1), 98–103 (1967).
    [CrossRef]
  21. L. Verlet, ““Computer “Experiments” on Classical Fluids. II. Equilibrium Correlation Functions,” Phys. Rev. 165(1), 201–214 (1968).
    [CrossRef]
  22. S. Nosé, “A unified formulation of the constant temperature molecular-dynamics methods,” J. Chem. Phys. 81(1), 511–519 (1984).
    [CrossRef]
  23. W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31(3), 1695–1697 (1985).
    [CrossRef] [PubMed]

2006 (1)

A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals,” J. Chem. Phys. 125(22), 224106 (2006).
[CrossRef] [PubMed]

2005 (1)

J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, “Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional,” J. Chem. Phys. 123(17), 174101 (2005).
[CrossRef] [PubMed]

2003 (1)

J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8219 (2003).
[CrossRef]

2001 (1)

. Gu, F. Zhou, K. T. Wan, T. K. Lim, S.-C. Tam, Y. L. Lam, D. Xu, and Z. Cheng, “Q-switching of a diode-pumped Nd:YVO4 laser with GaAs nonlinear output coupler,” Opt. Lasers Eng. 35(5), 299–307 (2001).
[CrossRef]

1999 (2)

J. Gu, F. Zhou, W. Xie, S. C. Tam, and Y. L. Lam, “Passive Q-switching of a diode-pumped Nd:YAG laser with a GaAs output coupler,” Opt. Commun. 165(4-6), 245–249 (1999).
[CrossRef]

G. Kresse and J. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[CrossRef]

1996 (4)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[CrossRef] [PubMed]

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[CrossRef]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[CrossRef] [PubMed]

T. T. Kajava and A. L. Gaeta, “Q-switching of a laser-pumped Nd:YAG laser with GaAs,” Opt. Lett. 21(16), 1244–1246 (1996).
[CrossRef] [PubMed]

1994 (1)

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).
[CrossRef] [PubMed]

1992 (1)

Z. Zhang, L. Qian, D. Fan, and X. Deng, “Gallium arsenide: A new material to accomplish passively mode-locked Nd:YAG laser,” Appl. Phys. Lett. 60(4), 419–421 (1992).
[CrossRef]

1988 (2)

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1μm,” IEEE J. Quantum Electron. 24(2), 289–303 (1988).
[CrossRef]

Y. X. Zou and G. Y. Wang, “Comment on “atomic model for the EL2 defect in GaAs,” Phys. Rev. B 36, 10953–10955 (1988).

1987 (2)

M. Levinson and J. A. Kafalas, “Site symmetry of the EL2 center in GaAs,” Phys. Rev. B Condens. Matter 35(17), 9383–9386 (1987).
[CrossRef] [PubMed]

J. F. Wager and J. A. Van Vechten, “Atomic model for the EL2 defect in GaAs,” Phys. Rev. B Condens. Matter 35(5), 2330–2339 (1987).
[CrossRef] [PubMed]

1986 (1)

H. von Bardeleben, D. Stiévenard, D. Deresmes, A. Huber, and J. Bourgoin; “Identification of a defect in a semiconductor: EL2 in GaAs,” Phys. Rev. B Condens. Matter 34(10), 7192–7202 (1986).
[CrossRef] [PubMed]

1985 (2)

M. Kamińska, M. Skowronskii, and W. Kuszko, “Identification of the 0.82-eV Electron Trap, EL2 in GaAs, as an Isolated Antisite Arsenic Defect,” Phys. Rev. Lett. 55(20), 2204–2207 (1985).
[CrossRef] [PubMed]

W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31(3), 1695–1697 (1985).
[CrossRef] [PubMed]

1984 (1)

S. Nosé, “A unified formulation of the constant temperature molecular-dynamics methods,” J. Chem. Phys. 81(1), 511–519 (1984).
[CrossRef]

1968 (1)

L. Verlet, ““Computer “Experiments” on Classical Fluids. II. Equilibrium Correlation Functions,” Phys. Rev. 165(1), 201–214 (1968).
[CrossRef]

1967 (1)

L. Verlet, “Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. 159(1), 98–103 (1967).
[CrossRef]

1966 (1)

R. Williams, “Determination of Deep Centers in Conducting Gallium Arsenide,” J. Appl. Phys. 37(9), 3411–3416 (1966).
[CrossRef]

Blöchl, P. E.

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).
[CrossRef] [PubMed]

Boggess, T. F.

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1μm,” IEEE J. Quantum Electron. 24(2), 289–303 (1988).
[CrossRef]

Bohnert, K. M.

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1μm,” IEEE J. Quantum Electron. 24(2), 289–303 (1988).
[CrossRef]

Bourgoin, J.

H. von Bardeleben, D. Stiévenard, D. Deresmes, A. Huber, and J. Bourgoin; “Identification of a defect in a semiconductor: EL2 in GaAs,” Phys. Rev. B Condens. Matter 34(10), 7192–7202 (1986).
[CrossRef] [PubMed]

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[CrossRef] [PubMed]

Cheng, Z.

. Gu, F. Zhou, K. T. Wan, T. K. Lim, S.-C. Tam, Y. L. Lam, D. Xu, and Z. Cheng, “Q-switching of a diode-pumped Nd:YVO4 laser with GaAs nonlinear output coupler,” Opt. Lasers Eng. 35(5), 299–307 (2001).
[CrossRef]

Deng, X.

Z. Zhang, L. Qian, D. Fan, and X. Deng, “Gallium arsenide: A new material to accomplish passively mode-locked Nd:YAG laser,” Appl. Phys. Lett. 60(4), 419–421 (1992).
[CrossRef]

Deresmes, D.

H. von Bardeleben, D. Stiévenard, D. Deresmes, A. Huber, and J. Bourgoin; “Identification of a defect in a semiconductor: EL2 in GaAs,” Phys. Rev. B Condens. Matter 34(10), 7192–7202 (1986).
[CrossRef] [PubMed]

Ernzerhof, M.

J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8219 (2003).
[CrossRef]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[CrossRef] [PubMed]

Fan, D.

Z. Zhang, L. Qian, D. Fan, and X. Deng, “Gallium arsenide: A new material to accomplish passively mode-locked Nd:YAG laser,” Appl. Phys. Lett. 60(4), 419–421 (1992).
[CrossRef]

Furthmüller, J.

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[CrossRef] [PubMed]

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[CrossRef]

Gaeta, A. L.

Gu, .

. Gu, F. Zhou, K. T. Wan, T. K. Lim, S.-C. Tam, Y. L. Lam, D. Xu, and Z. Cheng, “Q-switching of a diode-pumped Nd:YVO4 laser with GaAs nonlinear output coupler,” Opt. Lasers Eng. 35(5), 299–307 (2001).
[CrossRef]

Gu, J.

J. Gu, F. Zhou, W. Xie, S. C. Tam, and Y. L. Lam, “Passive Q-switching of a diode-pumped Nd:YAG laser with a GaAs output coupler,” Opt. Commun. 165(4-6), 245–249 (1999).
[CrossRef]

Heyd, J.

J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, “Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional,” J. Chem. Phys. 123(17), 174101 (2005).
[CrossRef] [PubMed]

J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8219 (2003).
[CrossRef]

Hoover, W. G.

W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31(3), 1695–1697 (1985).
[CrossRef] [PubMed]

Huber, A.

H. von Bardeleben, D. Stiévenard, D. Deresmes, A. Huber, and J. Bourgoin; “Identification of a defect in a semiconductor: EL2 in GaAs,” Phys. Rev. B Condens. Matter 34(10), 7192–7202 (1986).
[CrossRef] [PubMed]

Izmaylov, A. F.

A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals,” J. Chem. Phys. 125(22), 224106 (2006).
[CrossRef] [PubMed]

Joubert, J.

G. Kresse and J. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[CrossRef]

Kafalas, J. A.

M. Levinson and J. A. Kafalas, “Site symmetry of the EL2 center in GaAs,” Phys. Rev. B Condens. Matter 35(17), 9383–9386 (1987).
[CrossRef] [PubMed]

Kajava, T. T.

Kaminska, M.

M. Kamińska, M. Skowronskii, and W. Kuszko, “Identification of the 0.82-eV Electron Trap, EL2 in GaAs, as an Isolated Antisite Arsenic Defect,” Phys. Rev. Lett. 55(20), 2204–2207 (1985).
[CrossRef] [PubMed]

Kresse, G.

G. Kresse and J. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[CrossRef]

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[CrossRef]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[CrossRef] [PubMed]

Krukau, A. V.

A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals,” J. Chem. Phys. 125(22), 224106 (2006).
[CrossRef] [PubMed]

Kuszko, W.

M. Kamińska, M. Skowronskii, and W. Kuszko, “Identification of the 0.82-eV Electron Trap, EL2 in GaAs, as an Isolated Antisite Arsenic Defect,” Phys. Rev. Lett. 55(20), 2204–2207 (1985).
[CrossRef] [PubMed]

Lam, Y. L.

. Gu, F. Zhou, K. T. Wan, T. K. Lim, S.-C. Tam, Y. L. Lam, D. Xu, and Z. Cheng, “Q-switching of a diode-pumped Nd:YVO4 laser with GaAs nonlinear output coupler,” Opt. Lasers Eng. 35(5), 299–307 (2001).
[CrossRef]

J. Gu, F. Zhou, W. Xie, S. C. Tam, and Y. L. Lam, “Passive Q-switching of a diode-pumped Nd:YAG laser with a GaAs output coupler,” Opt. Commun. 165(4-6), 245–249 (1999).
[CrossRef]

Levinson, M.

M. Levinson and J. A. Kafalas, “Site symmetry of the EL2 center in GaAs,” Phys. Rev. B Condens. Matter 35(17), 9383–9386 (1987).
[CrossRef] [PubMed]

Lim, T. K.

. Gu, F. Zhou, K. T. Wan, T. K. Lim, S.-C. Tam, Y. L. Lam, D. Xu, and Z. Cheng, “Q-switching of a diode-pumped Nd:YVO4 laser with GaAs nonlinear output coupler,” Opt. Lasers Eng. 35(5), 299–307 (2001).
[CrossRef]

Martin, R. L.

J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, “Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional,” J. Chem. Phys. 123(17), 174101 (2005).
[CrossRef] [PubMed]

Nosé, S.

S. Nosé, “A unified formulation of the constant temperature molecular-dynamics methods,” J. Chem. Phys. 81(1), 511–519 (1984).
[CrossRef]

Peralta, J. E.

J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, “Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional,” J. Chem. Phys. 123(17), 174101 (2005).
[CrossRef] [PubMed]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[CrossRef] [PubMed]

Qian, L.

Z. Zhang, L. Qian, D. Fan, and X. Deng, “Gallium arsenide: A new material to accomplish passively mode-locked Nd:YAG laser,” Appl. Phys. Lett. 60(4), 419–421 (1992).
[CrossRef]

Scuseria, G. E.

A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals,” J. Chem. Phys. 125(22), 224106 (2006).
[CrossRef] [PubMed]

J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, “Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional,” J. Chem. Phys. 123(17), 174101 (2005).
[CrossRef] [PubMed]

J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8219 (2003).
[CrossRef]

Skowronskii, M.

M. Kamińska, M. Skowronskii, and W. Kuszko, “Identification of the 0.82-eV Electron Trap, EL2 in GaAs, as an Isolated Antisite Arsenic Defect,” Phys. Rev. Lett. 55(20), 2204–2207 (1985).
[CrossRef] [PubMed]

Smirl, A. L.

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1μm,” IEEE J. Quantum Electron. 24(2), 289–303 (1988).
[CrossRef]

Stiévenard, D.

H. von Bardeleben, D. Stiévenard, D. Deresmes, A. Huber, and J. Bourgoin; “Identification of a defect in a semiconductor: EL2 in GaAs,” Phys. Rev. B Condens. Matter 34(10), 7192–7202 (1986).
[CrossRef] [PubMed]

Tam, S. C.

J. Gu, F. Zhou, W. Xie, S. C. Tam, and Y. L. Lam, “Passive Q-switching of a diode-pumped Nd:YAG laser with a GaAs output coupler,” Opt. Commun. 165(4-6), 245–249 (1999).
[CrossRef]

Tam, S.-C.

. Gu, F. Zhou, K. T. Wan, T. K. Lim, S.-C. Tam, Y. L. Lam, D. Xu, and Z. Cheng, “Q-switching of a diode-pumped Nd:YVO4 laser with GaAs nonlinear output coupler,” Opt. Lasers Eng. 35(5), 299–307 (2001).
[CrossRef]

Valley, G. C.

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1μm,” IEEE J. Quantum Electron. 24(2), 289–303 (1988).
[CrossRef]

Van Vechten, J. A.

J. F. Wager and J. A. Van Vechten, “Atomic model for the EL2 defect in GaAs,” Phys. Rev. B Condens. Matter 35(5), 2330–2339 (1987).
[CrossRef] [PubMed]

Verlet, L.

L. Verlet, ““Computer “Experiments” on Classical Fluids. II. Equilibrium Correlation Functions,” Phys. Rev. 165(1), 201–214 (1968).
[CrossRef]

L. Verlet, “Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. 159(1), 98–103 (1967).
[CrossRef]

von Bardeleben, H.

H. von Bardeleben, D. Stiévenard, D. Deresmes, A. Huber, and J. Bourgoin; “Identification of a defect in a semiconductor: EL2 in GaAs,” Phys. Rev. B Condens. Matter 34(10), 7192–7202 (1986).
[CrossRef] [PubMed]

Vydrov, O. A.

A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals,” J. Chem. Phys. 125(22), 224106 (2006).
[CrossRef] [PubMed]

Wager, J. F.

J. F. Wager and J. A. Van Vechten, “Atomic model for the EL2 defect in GaAs,” Phys. Rev. B Condens. Matter 35(5), 2330–2339 (1987).
[CrossRef] [PubMed]

Wan, K. T.

. Gu, F. Zhou, K. T. Wan, T. K. Lim, S.-C. Tam, Y. L. Lam, D. Xu, and Z. Cheng, “Q-switching of a diode-pumped Nd:YVO4 laser with GaAs nonlinear output coupler,” Opt. Lasers Eng. 35(5), 299–307 (2001).
[CrossRef]

Wang, G. Y.

Y. X. Zou and G. Y. Wang, “Comment on “atomic model for the EL2 defect in GaAs,” Phys. Rev. B 36, 10953–10955 (1988).

Williams, R.

R. Williams, “Determination of Deep Centers in Conducting Gallium Arsenide,” J. Appl. Phys. 37(9), 3411–3416 (1966).
[CrossRef]

Xie, W.

J. Gu, F. Zhou, W. Xie, S. C. Tam, and Y. L. Lam, “Passive Q-switching of a diode-pumped Nd:YAG laser with a GaAs output coupler,” Opt. Commun. 165(4-6), 245–249 (1999).
[CrossRef]

Xu, D.

. Gu, F. Zhou, K. T. Wan, T. K. Lim, S.-C. Tam, Y. L. Lam, D. Xu, and Z. Cheng, “Q-switching of a diode-pumped Nd:YVO4 laser with GaAs nonlinear output coupler,” Opt. Lasers Eng. 35(5), 299–307 (2001).
[CrossRef]

Zhang, Z.

Z. Zhang, L. Qian, D. Fan, and X. Deng, “Gallium arsenide: A new material to accomplish passively mode-locked Nd:YAG laser,” Appl. Phys. Lett. 60(4), 419–421 (1992).
[CrossRef]

Zhou, F.

. Gu, F. Zhou, K. T. Wan, T. K. Lim, S.-C. Tam, Y. L. Lam, D. Xu, and Z. Cheng, “Q-switching of a diode-pumped Nd:YVO4 laser with GaAs nonlinear output coupler,” Opt. Lasers Eng. 35(5), 299–307 (2001).
[CrossRef]

J. Gu, F. Zhou, W. Xie, S. C. Tam, and Y. L. Lam, “Passive Q-switching of a diode-pumped Nd:YAG laser with a GaAs output coupler,” Opt. Commun. 165(4-6), 245–249 (1999).
[CrossRef]

Zou, Y. X.

Y. X. Zou and G. Y. Wang, “Comment on “atomic model for the EL2 defect in GaAs,” Phys. Rev. B 36, 10953–10955 (1988).

Appl. Phys. Lett. (1)

Z. Zhang, L. Qian, D. Fan, and X. Deng, “Gallium arsenide: A new material to accomplish passively mode-locked Nd:YAG laser,” Appl. Phys. Lett. 60(4), 419–421 (1992).
[CrossRef]

Comput. Mater. Sci. (1)

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1μm,” IEEE J. Quantum Electron. 24(2), 289–303 (1988).
[CrossRef]

J. Appl. Phys. (1)

R. Williams, “Determination of Deep Centers in Conducting Gallium Arsenide,” J. Appl. Phys. 37(9), 3411–3416 (1966).
[CrossRef]

J. Chem. Phys. (4)

J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, “Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional,” J. Chem. Phys. 123(17), 174101 (2005).
[CrossRef] [PubMed]

J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118(18), 8207–8219 (2003).
[CrossRef]

A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals,” J. Chem. Phys. 125(22), 224106 (2006).
[CrossRef] [PubMed]

S. Nosé, “A unified formulation of the constant temperature molecular-dynamics methods,” J. Chem. Phys. 81(1), 511–519 (1984).
[CrossRef]

Opt. Commun. (1)

J. Gu, F. Zhou, W. Xie, S. C. Tam, and Y. L. Lam, “Passive Q-switching of a diode-pumped Nd:YAG laser with a GaAs output coupler,” Opt. Commun. 165(4-6), 245–249 (1999).
[CrossRef]

Opt. Lasers Eng. (1)

. Gu, F. Zhou, K. T. Wan, T. K. Lim, S.-C. Tam, Y. L. Lam, D. Xu, and Z. Cheng, “Q-switching of a diode-pumped Nd:YVO4 laser with GaAs nonlinear output coupler,” Opt. Lasers Eng. 35(5), 299–307 (2001).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (2)

L. Verlet, “Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. 159(1), 98–103 (1967).
[CrossRef]

L. Verlet, ““Computer “Experiments” on Classical Fluids. II. Equilibrium Correlation Functions,” Phys. Rev. 165(1), 201–214 (1968).
[CrossRef]

Phys. Rev. A (1)

W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31(3), 1695–1697 (1985).
[CrossRef] [PubMed]

Phys. Rev. B (2)

G. Kresse and J. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[CrossRef]

Y. X. Zou and G. Y. Wang, “Comment on “atomic model for the EL2 defect in GaAs,” Phys. Rev. B 36, 10953–10955 (1988).

Phys. Rev. B Condens. Matter (5)

M. Levinson and J. A. Kafalas, “Site symmetry of the EL2 center in GaAs,” Phys. Rev. B Condens. Matter 35(17), 9383–9386 (1987).
[CrossRef] [PubMed]

J. F. Wager and J. A. Van Vechten, “Atomic model for the EL2 defect in GaAs,” Phys. Rev. B Condens. Matter 35(5), 2330–2339 (1987).
[CrossRef] [PubMed]

H. von Bardeleben, D. Stiévenard, D. Deresmes, A. Huber, and J. Bourgoin; “Identification of a defect in a semiconductor: EL2 in GaAs,” Phys. Rev. B Condens. Matter 34(10), 7192–7202 (1986).
[CrossRef] [PubMed]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[CrossRef] [PubMed]

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[CrossRef] [PubMed]

M. Kamińska, M. Skowronskii, and W. Kuszko, “Identification of the 0.82-eV Electron Trap, EL2 in GaAs, as an Isolated Antisite Arsenic Defect,” Phys. Rev. Lett. 55(20), 2204–2207 (1985).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Structure of the double Ga vacancies (VGa)2.

Fig. 2
Fig. 2

Structure of the ternary complex AsGaVAsVGa.

Fig. 3
Fig. 3

The band structure and the total DOS of pefect GaAs.

Fig. 5
Fig. 5

The band structure and the total DOS of GaAs with ternary complex defects (AsGaVAsVGa).

Fig. 4
Fig. 4

The band structure and the total DOS of GaAs with double Ga vacancies (VGa)2.

Fig. 6
Fig. 6

Density of states of GaAs with double Ga vacancies (VGa)2. (a). Total DOS; (b). LDOS of the other nearest As atom of VGa; (c). LDOS of the nearest As atom at the middle of two VGa

Fig. 7
Fig. 7

Density of states of GaAs with ternary complex defects (AsGaVAsVGa). (a). Total DOS; (b). LDOS of the arsenic antisite AsGa; (c). LDOS of the nearest Ga atom of VAs ; (d). LDOS of the nearest As atom of VGa

Fig. 8
Fig. 8

(a) Schematic of the initial double Ga vacancy (VGa)2. (b) Schematic of the ternary complex defects (AsGaVAsVGa) at 300K. (c) Schematic of the ternary complex defects (AsGaVAsVGa) at 773K. (d) Schematic of the ternary complex defects (AsGaVAsVGa) at 1173K.

Metrics