Abstract

A green-emitting phosphor, Ca14–xEuxMg2[SiO4]8 (CMS:Eu2+), has been synthesized as a component of white light emitting diodes (WLEDs). The emission spectrum is broad, with a maximum at about 505 nm under 400 nm excitation due to the transition from the 4f65d excited state to the 4f7-ground state of a Eu2+ ion. The dipole-dipole interaction was a dominant energy transfer mechanism of the electric multipolar character of CMS:Eu2+. The critical distance was calculated as 12.9 Å and 14.9 Å using a critical concentration of Eu2+ and Dexter’s theory for energy transfer. When CMS:Eu2+ and red phosphor are incorporated with an encapsulant on an ultraviolet (λmax = 395 nm) light emitting diodes (LEDs), white light with a color rendering index of 91 under a forward bias current of 20 mA was obtained. The structural and optical characterization of the phosphor is described.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, “Current status of GaN-based solid-state lighting,” MRS Bulletin 34, 101–107 (2009).
    [CrossRef]
  2. J. S. Speck and S. F. Chichibu, “Nonpolar and semipolar group III nitride-based materials,” MRS Bulletin 34, 304–312 (2009).
    [CrossRef]
  3. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274–1278 (2005).
    [CrossRef] [PubMed]
  4. Y. Uchida and T. Taguchi, “Lighting theory and luminous characteristics of white light-emitting diodes,” Opt. Eng. 12, 124003–124009 (2005).
    [CrossRef]
  5. Y. Shimomura, T. Kurushima, and N. Kijima, “Photoluminescence and crystal structure of green-emitting phosphor CaSc2O4:Ce3+,” J. Electrochem. Soc. 154, J234–J238 (2007).
    [CrossRef]
  6. A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting,” Chem. Mater. 18, 3314–3322 (2006).
    [CrossRef]
  7. W. B. Im, S. Brinkley, J. Hu, A. Mikailovsky, S. P. DenBaars, and R. Seshadri, “Sr2.975–xBaxCe0.025AlO4F: a highly efficient green-emitting oxyfluoride phosphor for solid state white lighting,” Chem. Mater. 22, 2842–2849 (2010).
    [CrossRef]
  8. W. B. Im, Y. Fourré, S. Brinkley, J. Sonoda, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Substitution of oxygen by fluorine in the GdSr2AlO5:Ce3+ phosphors: Gd1–xSr2+xAlO5–xFx solid solutions for solid state white lighting,” Opt. Express 17, 22673–22679 (2009).
    [CrossRef]
  9. W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable xxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23, 2300–2305 (2011).
    [CrossRef] [PubMed]
  10. V. Bachmann, C. Ronda, O. Oeckler, and W. Schnick, “Color point tuning for (Sr, Ca, Ba) Si2O2N2:Eu2+ for white light LEDs,” Chem. Mater. 21, 316–325 (2009).
    [CrossRef]
  11. C. Hecht, F. Stadler, P. J. Schmidt, J. S. auf der Gunne, V. Baumann, and W. Schnick, “SrAlSi4N7:Eu2+ a nitridoalumosilicate phosphor for warm white light (pc) LEDs with edge-sharing tetrahedra,” Chem. Mater. 21, 1595–1601 (2009).
    [CrossRef]
  12. Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2–δ N2+2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors,” Chem. Mater. 17, 3242–3248 (2005).
    [CrossRef]
  13. R. J. Xie, N. Hirosaki, K. Sakuma, Y. Yamamoto, and M. Mitomo, “Eu2+-doped Ca–α–SiAlON: A yellow phosphor for white light-emitting diodes,” Appl. Phys. Lett. 84, 5404–5406 (2004).
    [CrossRef]
  14. J. K. Park, M. A. Lim, C. H. Kim, H. D. Park, J. T. Park, and S. Y. Choi, “White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties,” Appl. Phys. Lett. 82, 683–685 (2003).
    [CrossRef]
  15. G. G. M. Catti, G. Ivaldi, and G. Zanini, “The β ⇌ α phase transition of Sr2SiO4. I. order-disorder in the structure of the α form at 383 K,” Acta Crystallogr. B,  39, 674–679 (1983).
    [CrossRef]
  16. P. B. Moore and T. Araki, “The crystal structure of bredigite and the genealogoy of some alkaline earth orthosilicates,” Am. Mineral. 61, 74–87 (1976).
  17. P. B. Moore, “Bracelets and pinwheels: a topological-geometrical approach to the calcium orthosilicate and alkali sulfate structures,” Am. Mineral. 58, 32–42 (1973).
  18. C. M. Midgley, “The crystal structure of dicalcium silicate,” Acta Crystallogr. 5, 307–312 (1952).
    [CrossRef]
  19. A. C. Larson and R. B. Von Dreele, “General structure analysis system (GSAS),” Los Alamos National Laboratory Report LAUR,  86–748 (1994).
  20. R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr.  B32, 751–767 (1976).
  21. S. Shionoya and W. M. Yen, Phosphor Handbook (CRC Press, New York, 1998).
  22. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994).
    [CrossRef]
  23. P. D. Rack and P. H. Holloway, “Improved brightness, efficiency, and stability of sputter deposited alternating current thin film electroluminescent ZnS:Mn by codoping with potassium chloride,” Mater. Sci. Eng. Rev. 21, 171–219 (1998).
    [CrossRef]
  24. G. Blasse, “Energy transfer in oxidic phosphors,” Phys. Lett. A. 24, 131–144 (1969).
  25. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850, (1953).
    [CrossRef]
  26. G. Blasse, “Energy transfer between inequivalent Eu2+ ions,” J. Solid State Chem. 62, 207–211 (1986).
    [CrossRef]
  27. L. G. Van Uitert, “Characterization of energy transfer interactions between rare earth ions,” J. Electrochem. Soc. 114, 1048–1053 (1967).
    [CrossRef]
  28. L. Ozawa, Cathodoluminescence: Theory and Applications (VCH, 1990).
  29. P. Kubelka and F. Munk, “Ein beitrag zur optik der farbanstriche,” Z. Tech. Phys. 12, 593–601 (1931).
  30. S. Bhushan and M. V. Chukichev, “Temperature dependent studies of cathodoluminescence of green band of ZnO crystals,” J. Mater. Sci. Lett. 7, 319–321 (1988).
    [CrossRef]
  31. Y. Chen, B. Liu, C. Shi, G. Ren, and G. Zimmerer, “The temperature effect of Lu2SiO5:Ce3+ luminescence,” Nucl. Instrum. Methods Phys. Res. A 537, 31–35 (2005).
    [CrossRef]

2011 (1)

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable xxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23, 2300–2305 (2011).
[CrossRef] [PubMed]

2010 (1)

W. B. Im, S. Brinkley, J. Hu, A. Mikailovsky, S. P. DenBaars, and R. Seshadri, “Sr2.975–xBaxCe0.025AlO4F: a highly efficient green-emitting oxyfluoride phosphor for solid state white lighting,” Chem. Mater. 22, 2842–2849 (2010).
[CrossRef]

2009 (5)

W. B. Im, Y. Fourré, S. Brinkley, J. Sonoda, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Substitution of oxygen by fluorine in the GdSr2AlO5:Ce3+ phosphors: Gd1–xSr2+xAlO5–xFx solid solutions for solid state white lighting,” Opt. Express 17, 22673–22679 (2009).
[CrossRef]

S. Nakamura, “Current status of GaN-based solid-state lighting,” MRS Bulletin 34, 101–107 (2009).
[CrossRef]

J. S. Speck and S. F. Chichibu, “Nonpolar and semipolar group III nitride-based materials,” MRS Bulletin 34, 304–312 (2009).
[CrossRef]

V. Bachmann, C. Ronda, O. Oeckler, and W. Schnick, “Color point tuning for (Sr, Ca, Ba) Si2O2N2:Eu2+ for white light LEDs,” Chem. Mater. 21, 316–325 (2009).
[CrossRef]

C. Hecht, F. Stadler, P. J. Schmidt, J. S. auf der Gunne, V. Baumann, and W. Schnick, “SrAlSi4N7:Eu2+ a nitridoalumosilicate phosphor for warm white light (pc) LEDs with edge-sharing tetrahedra,” Chem. Mater. 21, 1595–1601 (2009).
[CrossRef]

2007 (1)

Y. Shimomura, T. Kurushima, and N. Kijima, “Photoluminescence and crystal structure of green-emitting phosphor CaSc2O4:Ce3+,” J. Electrochem. Soc. 154, J234–J238 (2007).
[CrossRef]

2006 (1)

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting,” Chem. Mater. 18, 3314–3322 (2006).
[CrossRef]

2005 (4)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274–1278 (2005).
[CrossRef] [PubMed]

Y. Uchida and T. Taguchi, “Lighting theory and luminous characteristics of white light-emitting diodes,” Opt. Eng. 12, 124003–124009 (2005).
[CrossRef]

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2–δ N2+2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors,” Chem. Mater. 17, 3242–3248 (2005).
[CrossRef]

Y. Chen, B. Liu, C. Shi, G. Ren, and G. Zimmerer, “The temperature effect of Lu2SiO5:Ce3+ luminescence,” Nucl. Instrum. Methods Phys. Res. A 537, 31–35 (2005).
[CrossRef]

2004 (1)

R. J. Xie, N. Hirosaki, K. Sakuma, Y. Yamamoto, and M. Mitomo, “Eu2+-doped Ca–α–SiAlON: A yellow phosphor for white light-emitting diodes,” Appl. Phys. Lett. 84, 5404–5406 (2004).
[CrossRef]

2003 (1)

J. K. Park, M. A. Lim, C. H. Kim, H. D. Park, J. T. Park, and S. Y. Choi, “White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties,” Appl. Phys. Lett. 82, 683–685 (2003).
[CrossRef]

1998 (1)

P. D. Rack and P. H. Holloway, “Improved brightness, efficiency, and stability of sputter deposited alternating current thin film electroluminescent ZnS:Mn by codoping with potassium chloride,” Mater. Sci. Eng. Rev. 21, 171–219 (1998).
[CrossRef]

1994 (1)

A. C. Larson and R. B. Von Dreele, “General structure analysis system (GSAS),” Los Alamos National Laboratory Report LAUR,  86–748 (1994).

1988 (1)

S. Bhushan and M. V. Chukichev, “Temperature dependent studies of cathodoluminescence of green band of ZnO crystals,” J. Mater. Sci. Lett. 7, 319–321 (1988).
[CrossRef]

1986 (1)

G. Blasse, “Energy transfer between inequivalent Eu2+ ions,” J. Solid State Chem. 62, 207–211 (1986).
[CrossRef]

1983 (1)

G. G. M. Catti, G. Ivaldi, and G. Zanini, “The β ⇌ α phase transition of Sr2SiO4. I. order-disorder in the structure of the α form at 383 K,” Acta Crystallogr. B,  39, 674–679 (1983).
[CrossRef]

1976 (2)

P. B. Moore and T. Araki, “The crystal structure of bredigite and the genealogoy of some alkaline earth orthosilicates,” Am. Mineral. 61, 74–87 (1976).

R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr.  B32, 751–767 (1976).

1973 (1)

P. B. Moore, “Bracelets and pinwheels: a topological-geometrical approach to the calcium orthosilicate and alkali sulfate structures,” Am. Mineral. 58, 32–42 (1973).

1969 (1)

G. Blasse, “Energy transfer in oxidic phosphors,” Phys. Lett. A. 24, 131–144 (1969).

1967 (1)

L. G. Van Uitert, “Characterization of energy transfer interactions between rare earth ions,” J. Electrochem. Soc. 114, 1048–1053 (1967).
[CrossRef]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850, (1953).
[CrossRef]

1952 (1)

C. M. Midgley, “The crystal structure of dicalcium silicate,” Acta Crystallogr. 5, 307–312 (1952).
[CrossRef]

1931 (1)

P. Kubelka and F. Munk, “Ein beitrag zur optik der farbanstriche,” Z. Tech. Phys. 12, 593–601 (1931).

Araki, T.

P. B. Moore and T. Araki, “The crystal structure of bredigite and the genealogoy of some alkaline earth orthosilicates,” Am. Mineral. 61, 74–87 (1976).

auf der Gunne, J. S.

C. Hecht, F. Stadler, P. J. Schmidt, J. S. auf der Gunne, V. Baumann, and W. Schnick, “SrAlSi4N7:Eu2+ a nitridoalumosilicate phosphor for warm white light (pc) LEDs with edge-sharing tetrahedra,” Chem. Mater. 21, 1595–1601 (2009).
[CrossRef]

Bachmann, V.

V. Bachmann, C. Ronda, O. Oeckler, and W. Schnick, “Color point tuning for (Sr, Ca, Ba) Si2O2N2:Eu2+ for white light LEDs,” Chem. Mater. 21, 316–325 (2009).
[CrossRef]

Baumann, V.

C. Hecht, F. Stadler, P. J. Schmidt, J. S. auf der Gunne, V. Baumann, and W. Schnick, “SrAlSi4N7:Eu2+ a nitridoalumosilicate phosphor for warm white light (pc) LEDs with edge-sharing tetrahedra,” Chem. Mater. 21, 1595–1601 (2009).
[CrossRef]

Bhushan, S.

S. Bhushan and M. V. Chukichev, “Temperature dependent studies of cathodoluminescence of green band of ZnO crystals,” J. Mater. Sci. Lett. 7, 319–321 (1988).
[CrossRef]

Blasse, G.

G. Blasse, “Energy transfer between inequivalent Eu2+ ions,” J. Solid State Chem. 62, 207–211 (1986).
[CrossRef]

G. Blasse, “Energy transfer in oxidic phosphors,” Phys. Lett. A. 24, 131–144 (1969).

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994).
[CrossRef]

Brinkley, S.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable xxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23, 2300–2305 (2011).
[CrossRef] [PubMed]

W. B. Im, S. Brinkley, J. Hu, A. Mikailovsky, S. P. DenBaars, and R. Seshadri, “Sr2.975–xBaxCe0.025AlO4F: a highly efficient green-emitting oxyfluoride phosphor for solid state white lighting,” Chem. Mater. 22, 2842–2849 (2010).
[CrossRef]

W. B. Im, Y. Fourré, S. Brinkley, J. Sonoda, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Substitution of oxygen by fluorine in the GdSr2AlO5:Ce3+ phosphors: Gd1–xSr2+xAlO5–xFx solid solutions for solid state white lighting,” Opt. Express 17, 22673–22679 (2009).
[CrossRef]

Catti, G. G. M.

G. G. M. Catti, G. Ivaldi, and G. Zanini, “The β ⇌ α phase transition of Sr2SiO4. I. order-disorder in the structure of the α form at 383 K,” Acta Crystallogr. B,  39, 674–679 (1983).
[CrossRef]

Chandran, R. G.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting,” Chem. Mater. 18, 3314–3322 (2006).
[CrossRef]

Chen, Y.

Y. Chen, B. Liu, C. Shi, G. Ren, and G. Zimmerer, “The temperature effect of Lu2SiO5:Ce3+ luminescence,” Nucl. Instrum. Methods Phys. Res. A 537, 31–35 (2005).
[CrossRef]

Chichibu, S. F.

J. S. Speck and S. F. Chichibu, “Nonpolar and semipolar group III nitride-based materials,” MRS Bulletin 34, 304–312 (2009).
[CrossRef]

Chmelka, B. F.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable xxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23, 2300–2305 (2011).
[CrossRef] [PubMed]

Choi, S. Y.

J. K. Park, M. A. Lim, C. H. Kim, H. D. Park, J. T. Park, and S. Y. Choi, “White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties,” Appl. Phys. Lett. 82, 683–685 (2003).
[CrossRef]

Chukichev, M. V.

S. Bhushan and M. V. Chukichev, “Temperature dependent studies of cathodoluminescence of green band of ZnO crystals,” J. Mater. Sci. Lett. 7, 319–321 (1988).
[CrossRef]

de With, G.

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2–δ N2+2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors,” Chem. Mater. 17, 3242–3248 (2005).
[CrossRef]

Delsing, A. C. A.

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2–δ N2+2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors,” Chem. Mater. 17, 3242–3248 (2005).
[CrossRef]

DenBaars, S. P.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable xxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23, 2300–2305 (2011).
[CrossRef] [PubMed]

W. B. Im, S. Brinkley, J. Hu, A. Mikailovsky, S. P. DenBaars, and R. Seshadri, “Sr2.975–xBaxCe0.025AlO4F: a highly efficient green-emitting oxyfluoride phosphor for solid state white lighting,” Chem. Mater. 22, 2842–2849 (2010).
[CrossRef]

W. B. Im, Y. Fourré, S. Brinkley, J. Sonoda, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Substitution of oxygen by fluorine in the GdSr2AlO5:Ce3+ phosphors: Gd1–xSr2+xAlO5–xFx solid solutions for solid state white lighting,” Opt. Express 17, 22673–22679 (2009).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850, (1953).
[CrossRef]

Fourré, Y.

Gao, Y.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting,” Chem. Mater. 18, 3314–3322 (2006).
[CrossRef]

George, N.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable xxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23, 2300–2305 (2011).
[CrossRef] [PubMed]

Grabmaier, B. C.

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994).
[CrossRef]

Hecht, C.

C. Hecht, F. Stadler, P. J. Schmidt, J. S. auf der Gunne, V. Baumann, and W. Schnick, “SrAlSi4N7:Eu2+ a nitridoalumosilicate phosphor for warm white light (pc) LEDs with edge-sharing tetrahedra,” Chem. Mater. 21, 1595–1601 (2009).
[CrossRef]

Heward, W. J.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting,” Chem. Mater. 18, 3314–3322 (2006).
[CrossRef]

Hintzen, H. T.

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2–δ N2+2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors,” Chem. Mater. 17, 3242–3248 (2005).
[CrossRef]

Hirosaki, N.

R. J. Xie, N. Hirosaki, K. Sakuma, Y. Yamamoto, and M. Mitomo, “Eu2+-doped Ca–α–SiAlON: A yellow phosphor for white light-emitting diodes,” Appl. Phys. Lett. 84, 5404–5406 (2004).
[CrossRef]

Holloway, P. H.

P. D. Rack and P. H. Holloway, “Improved brightness, efficiency, and stability of sputter deposited alternating current thin film electroluminescent ZnS:Mn by codoping with potassium chloride,” Mater. Sci. Eng. Rev. 21, 171–219 (1998).
[CrossRef]

Hu, J.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable xxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23, 2300–2305 (2011).
[CrossRef] [PubMed]

W. B. Im, S. Brinkley, J. Hu, A. Mikailovsky, S. P. DenBaars, and R. Seshadri, “Sr2.975–xBaxCe0.025AlO4F: a highly efficient green-emitting oxyfluoride phosphor for solid state white lighting,” Chem. Mater. 22, 2842–2849 (2010).
[CrossRef]

Im, W. B.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable xxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23, 2300–2305 (2011).
[CrossRef] [PubMed]

W. B. Im, S. Brinkley, J. Hu, A. Mikailovsky, S. P. DenBaars, and R. Seshadri, “Sr2.975–xBaxCe0.025AlO4F: a highly efficient green-emitting oxyfluoride phosphor for solid state white lighting,” Chem. Mater. 22, 2842–2849 (2010).
[CrossRef]

W. B. Im, Y. Fourré, S. Brinkley, J. Sonoda, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Substitution of oxygen by fluorine in the GdSr2AlO5:Ce3+ phosphors: Gd1–xSr2+xAlO5–xFx solid solutions for solid state white lighting,” Opt. Express 17, 22673–22679 (2009).
[CrossRef]

Ivaldi, G.

G. G. M. Catti, G. Ivaldi, and G. Zanini, “The β ⇌ α phase transition of Sr2SiO4. I. order-disorder in the structure of the α form at 383 K,” Acta Crystallogr. B,  39, 674–679 (1983).
[CrossRef]

Kijima, N.

Y. Shimomura, T. Kurushima, and N. Kijima, “Photoluminescence and crystal structure of green-emitting phosphor CaSc2O4:Ce3+,” J. Electrochem. Soc. 154, J234–J238 (2007).
[CrossRef]

Kim, C. H.

J. K. Park, M. A. Lim, C. H. Kim, H. D. Park, J. T. Park, and S. Y. Choi, “White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties,” Appl. Phys. Lett. 82, 683–685 (2003).
[CrossRef]

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274–1278 (2005).
[CrossRef] [PubMed]

Kubelka, P.

P. Kubelka and F. Munk, “Ein beitrag zur optik der farbanstriche,” Z. Tech. Phys. 12, 593–601 (1931).

Kurushima, T.

Y. Shimomura, T. Kurushima, and N. Kijima, “Photoluminescence and crystal structure of green-emitting phosphor CaSc2O4:Ce3+,” J. Electrochem. Soc. 154, J234–J238 (2007).
[CrossRef]

Kurzman, J.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable xxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23, 2300–2305 (2011).
[CrossRef] [PubMed]

Larson, A. C.

A. C. Larson and R. B. Von Dreele, “General structure analysis system (GSAS),” Los Alamos National Laboratory Report LAUR,  86–748 (1994).

Li, Y. Q.

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2–δ N2+2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors,” Chem. Mater. 17, 3242–3248 (2005).
[CrossRef]

Lim, M. A.

J. K. Park, M. A. Lim, C. H. Kim, H. D. Park, J. T. Park, and S. Y. Choi, “White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties,” Appl. Phys. Lett. 82, 683–685 (2003).
[CrossRef]

Liu, B.

Y. Chen, B. Liu, C. Shi, G. Ren, and G. Zimmerer, “The temperature effect of Lu2SiO5:Ce3+ luminescence,” Nucl. Instrum. Methods Phys. Res. A 537, 31–35 (2005).
[CrossRef]

Midgley, C. M.

C. M. Midgley, “The crystal structure of dicalcium silicate,” Acta Crystallogr. 5, 307–312 (1952).
[CrossRef]

Mikailovsky, A.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable xxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23, 2300–2305 (2011).
[CrossRef] [PubMed]

W. B. Im, S. Brinkley, J. Hu, A. Mikailovsky, S. P. DenBaars, and R. Seshadri, “Sr2.975–xBaxCe0.025AlO4F: a highly efficient green-emitting oxyfluoride phosphor for solid state white lighting,” Chem. Mater. 22, 2842–2849 (2010).
[CrossRef]

Mitomo, M.

R. J. Xie, N. Hirosaki, K. Sakuma, Y. Yamamoto, and M. Mitomo, “Eu2+-doped Ca–α–SiAlON: A yellow phosphor for white light-emitting diodes,” Appl. Phys. Lett. 84, 5404–5406 (2004).
[CrossRef]

Moore, P. B.

P. B. Moore and T. Araki, “The crystal structure of bredigite and the genealogoy of some alkaline earth orthosilicates,” Am. Mineral. 61, 74–87 (1976).

P. B. Moore, “Bracelets and pinwheels: a topological-geometrical approach to the calcium orthosilicate and alkali sulfate structures,” Am. Mineral. 58, 32–42 (1973).

Munk, F.

P. Kubelka and F. Munk, “Ein beitrag zur optik der farbanstriche,” Z. Tech. Phys. 12, 593–601 (1931).

Nakamura, S.

Oeckler, O.

V. Bachmann, C. Ronda, O. Oeckler, and W. Schnick, “Color point tuning for (Sr, Ca, Ba) Si2O2N2:Eu2+ for white light LEDs,” Chem. Mater. 21, 316–325 (2009).
[CrossRef]

Ozawa, L.

L. Ozawa, Cathodoluminescence: Theory and Applications (VCH, 1990).

Park, H. D.

J. K. Park, M. A. Lim, C. H. Kim, H. D. Park, J. T. Park, and S. Y. Choi, “White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties,” Appl. Phys. Lett. 82, 683–685 (2003).
[CrossRef]

Park, J. K.

J. K. Park, M. A. Lim, C. H. Kim, H. D. Park, J. T. Park, and S. Y. Choi, “White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties,” Appl. Phys. Lett. 82, 683–685 (2003).
[CrossRef]

Park, J. T.

J. K. Park, M. A. Lim, C. H. Kim, H. D. Park, J. T. Park, and S. Y. Choi, “White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties,” Appl. Phys. Lett. 82, 683–685 (2003).
[CrossRef]

Rack, P. D.

P. D. Rack and P. H. Holloway, “Improved brightness, efficiency, and stability of sputter deposited alternating current thin film electroluminescent ZnS:Mn by codoping with potassium chloride,” Mater. Sci. Eng. Rev. 21, 171–219 (1998).
[CrossRef]

Ren, G.

Y. Chen, B. Liu, C. Shi, G. Ren, and G. Zimmerer, “The temperature effect of Lu2SiO5:Ce3+ luminescence,” Nucl. Instrum. Methods Phys. Res. A 537, 31–35 (2005).
[CrossRef]

Ronda, C.

V. Bachmann, C. Ronda, O. Oeckler, and W. Schnick, “Color point tuning for (Sr, Ca, Ba) Si2O2N2:Eu2+ for white light LEDs,” Chem. Mater. 21, 316–325 (2009).
[CrossRef]

Sakuma, K.

R. J. Xie, N. Hirosaki, K. Sakuma, Y. Yamamoto, and M. Mitomo, “Eu2+-doped Ca–α–SiAlON: A yellow phosphor for white light-emitting diodes,” Appl. Phys. Lett. 84, 5404–5406 (2004).
[CrossRef]

Schmidt, P. J.

C. Hecht, F. Stadler, P. J. Schmidt, J. S. auf der Gunne, V. Baumann, and W. Schnick, “SrAlSi4N7:Eu2+ a nitridoalumosilicate phosphor for warm white light (pc) LEDs with edge-sharing tetrahedra,” Chem. Mater. 21, 1595–1601 (2009).
[CrossRef]

Schnick, W.

C. Hecht, F. Stadler, P. J. Schmidt, J. S. auf der Gunne, V. Baumann, and W. Schnick, “SrAlSi4N7:Eu2+ a nitridoalumosilicate phosphor for warm white light (pc) LEDs with edge-sharing tetrahedra,” Chem. Mater. 21, 1595–1601 (2009).
[CrossRef]

V. Bachmann, C. Ronda, O. Oeckler, and W. Schnick, “Color point tuning for (Sr, Ca, Ba) Si2O2N2:Eu2+ for white light LEDs,” Chem. Mater. 21, 316–325 (2009).
[CrossRef]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274–1278 (2005).
[CrossRef] [PubMed]

Seshadri, R.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable xxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23, 2300–2305 (2011).
[CrossRef] [PubMed]

W. B. Im, S. Brinkley, J. Hu, A. Mikailovsky, S. P. DenBaars, and R. Seshadri, “Sr2.975–xBaxCe0.025AlO4F: a highly efficient green-emitting oxyfluoride phosphor for solid state white lighting,” Chem. Mater. 22, 2842–2849 (2010).
[CrossRef]

W. B. Im, Y. Fourré, S. Brinkley, J. Sonoda, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Substitution of oxygen by fluorine in the GdSr2AlO5:Ce3+ phosphors: Gd1–xSr2+xAlO5–xFx solid solutions for solid state white lighting,” Opt. Express 17, 22673–22679 (2009).
[CrossRef]

Setlur, A. A.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting,” Chem. Mater. 18, 3314–3322 (2006).
[CrossRef]

Shankar, M. V.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting,” Chem. Mater. 18, 3314–3322 (2006).
[CrossRef]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr.  B32, 751–767 (1976).

Shi, C.

Y. Chen, B. Liu, C. Shi, G. Ren, and G. Zimmerer, “The temperature effect of Lu2SiO5:Ce3+ luminescence,” Nucl. Instrum. Methods Phys. Res. A 537, 31–35 (2005).
[CrossRef]

Shimomura, Y.

Y. Shimomura, T. Kurushima, and N. Kijima, “Photoluminescence and crystal structure of green-emitting phosphor CaSc2O4:Ce3+,” J. Electrochem. Soc. 154, J234–J238 (2007).
[CrossRef]

Shionoya, S.

S. Shionoya and W. M. Yen, Phosphor Handbook (CRC Press, New York, 1998).

Sonoda, J.

Speck, J. S.

J. S. Speck and S. F. Chichibu, “Nonpolar and semipolar group III nitride-based materials,” MRS Bulletin 34, 304–312 (2009).
[CrossRef]

Srivastava, A. M.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting,” Chem. Mater. 18, 3314–3322 (2006).
[CrossRef]

Stadler, F.

C. Hecht, F. Stadler, P. J. Schmidt, J. S. auf der Gunne, V. Baumann, and W. Schnick, “SrAlSi4N7:Eu2+ a nitridoalumosilicate phosphor for warm white light (pc) LEDs with edge-sharing tetrahedra,” Chem. Mater. 21, 1595–1601 (2009).
[CrossRef]

Taguchi, T.

Y. Uchida and T. Taguchi, “Lighting theory and luminous characteristics of white light-emitting diodes,” Opt. Eng. 12, 124003–124009 (2005).
[CrossRef]

Uchida, Y.

Y. Uchida and T. Taguchi, “Lighting theory and luminous characteristics of white light-emitting diodes,” Opt. Eng. 12, 124003–124009 (2005).
[CrossRef]

Van Uitert, L. G.

L. G. Van Uitert, “Characterization of energy transfer interactions between rare earth ions,” J. Electrochem. Soc. 114, 1048–1053 (1967).
[CrossRef]

Von Dreele, R. B.

A. C. Larson and R. B. Von Dreele, “General structure analysis system (GSAS),” Los Alamos National Laboratory Report LAUR,  86–748 (1994).

Xie, R. J.

R. J. Xie, N. Hirosaki, K. Sakuma, Y. Yamamoto, and M. Mitomo, “Eu2+-doped Ca–α–SiAlON: A yellow phosphor for white light-emitting diodes,” Appl. Phys. Lett. 84, 5404–5406 (2004).
[CrossRef]

Yamamoto, Y.

R. J. Xie, N. Hirosaki, K. Sakuma, Y. Yamamoto, and M. Mitomo, “Eu2+-doped Ca–α–SiAlON: A yellow phosphor for white light-emitting diodes,” Appl. Phys. Lett. 84, 5404–5406 (2004).
[CrossRef]

Yen, W. M.

S. Shionoya and W. M. Yen, Phosphor Handbook (CRC Press, New York, 1998).

Zanini, G.

G. G. M. Catti, G. Ivaldi, and G. Zanini, “The β ⇌ α phase transition of Sr2SiO4. I. order-disorder in the structure of the α form at 383 K,” Acta Crystallogr. B,  39, 674–679 (1983).
[CrossRef]

Zimmerer, G.

Y. Chen, B. Liu, C. Shi, G. Ren, and G. Zimmerer, “The temperature effect of Lu2SiO5:Ce3+ luminescence,” Nucl. Instrum. Methods Phys. Res. A 537, 31–35 (2005).
[CrossRef]

Acta Crystallogr (1)

R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr.  B32, 751–767 (1976).

Acta Crystallogr. (1)

C. M. Midgley, “The crystal structure of dicalcium silicate,” Acta Crystallogr. 5, 307–312 (1952).
[CrossRef]

Acta Crystallogr. B (1)

G. G. M. Catti, G. Ivaldi, and G. Zanini, “The β ⇌ α phase transition of Sr2SiO4. I. order-disorder in the structure of the α form at 383 K,” Acta Crystallogr. B,  39, 674–679 (1983).
[CrossRef]

Adv. Mater. (1)

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable xxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater. 23, 2300–2305 (2011).
[CrossRef] [PubMed]

Am. Mineral. (2)

P. B. Moore and T. Araki, “The crystal structure of bredigite and the genealogoy of some alkaline earth orthosilicates,” Am. Mineral. 61, 74–87 (1976).

P. B. Moore, “Bracelets and pinwheels: a topological-geometrical approach to the calcium orthosilicate and alkali sulfate structures,” Am. Mineral. 58, 32–42 (1973).

Appl. Phys. Lett. (2)

R. J. Xie, N. Hirosaki, K. Sakuma, Y. Yamamoto, and M. Mitomo, “Eu2+-doped Ca–α–SiAlON: A yellow phosphor for white light-emitting diodes,” Appl. Phys. Lett. 84, 5404–5406 (2004).
[CrossRef]

J. K. Park, M. A. Lim, C. H. Kim, H. D. Park, J. T. Park, and S. Y. Choi, “White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties,” Appl. Phys. Lett. 82, 683–685 (2003).
[CrossRef]

Chem. Mater. (5)

V. Bachmann, C. Ronda, O. Oeckler, and W. Schnick, “Color point tuning for (Sr, Ca, Ba) Si2O2N2:Eu2+ for white light LEDs,” Chem. Mater. 21, 316–325 (2009).
[CrossRef]

C. Hecht, F. Stadler, P. J. Schmidt, J. S. auf der Gunne, V. Baumann, and W. Schnick, “SrAlSi4N7:Eu2+ a nitridoalumosilicate phosphor for warm white light (pc) LEDs with edge-sharing tetrahedra,” Chem. Mater. 21, 1595–1601 (2009).
[CrossRef]

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2–δ N2+2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors,” Chem. Mater. 17, 3242–3248 (2005).
[CrossRef]

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting,” Chem. Mater. 18, 3314–3322 (2006).
[CrossRef]

W. B. Im, S. Brinkley, J. Hu, A. Mikailovsky, S. P. DenBaars, and R. Seshadri, “Sr2.975–xBaxCe0.025AlO4F: a highly efficient green-emitting oxyfluoride phosphor for solid state white lighting,” Chem. Mater. 22, 2842–2849 (2010).
[CrossRef]

J. Chem. Phys. (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850, (1953).
[CrossRef]

J. Electrochem. Soc. (2)

Y. Shimomura, T. Kurushima, and N. Kijima, “Photoluminescence and crystal structure of green-emitting phosphor CaSc2O4:Ce3+,” J. Electrochem. Soc. 154, J234–J238 (2007).
[CrossRef]

L. G. Van Uitert, “Characterization of energy transfer interactions between rare earth ions,” J. Electrochem. Soc. 114, 1048–1053 (1967).
[CrossRef]

J. Mater. Sci. Lett. (1)

S. Bhushan and M. V. Chukichev, “Temperature dependent studies of cathodoluminescence of green band of ZnO crystals,” J. Mater. Sci. Lett. 7, 319–321 (1988).
[CrossRef]

J. Solid State Chem. (1)

G. Blasse, “Energy transfer between inequivalent Eu2+ ions,” J. Solid State Chem. 62, 207–211 (1986).
[CrossRef]

Los Alamos National Laboratory Report LAUR (1)

A. C. Larson and R. B. Von Dreele, “General structure analysis system (GSAS),” Los Alamos National Laboratory Report LAUR,  86–748 (1994).

Mater. Sci. Eng. Rev. (1)

P. D. Rack and P. H. Holloway, “Improved brightness, efficiency, and stability of sputter deposited alternating current thin film electroluminescent ZnS:Mn by codoping with potassium chloride,” Mater. Sci. Eng. Rev. 21, 171–219 (1998).
[CrossRef]

MRS Bulletin (2)

S. Nakamura, “Current status of GaN-based solid-state lighting,” MRS Bulletin 34, 101–107 (2009).
[CrossRef]

J. S. Speck and S. F. Chichibu, “Nonpolar and semipolar group III nitride-based materials,” MRS Bulletin 34, 304–312 (2009).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

Y. Chen, B. Liu, C. Shi, G. Ren, and G. Zimmerer, “The temperature effect of Lu2SiO5:Ce3+ luminescence,” Nucl. Instrum. Methods Phys. Res. A 537, 31–35 (2005).
[CrossRef]

Opt. Eng. (1)

Y. Uchida and T. Taguchi, “Lighting theory and luminous characteristics of white light-emitting diodes,” Opt. Eng. 12, 124003–124009 (2005).
[CrossRef]

Opt. Express (1)

Phys. Lett. A. (1)

G. Blasse, “Energy transfer in oxidic phosphors,” Phys. Lett. A. 24, 131–144 (1969).

Science (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274–1278 (2005).
[CrossRef] [PubMed]

Z. Tech. Phys. (1)

P. Kubelka and F. Munk, “Ein beitrag zur optik der farbanstriche,” Z. Tech. Phys. 12, 593–601 (1931).

Other (3)

L. Ozawa, Cathodoluminescence: Theory and Applications (VCH, 1990).

S. Shionoya and W. M. Yen, Phosphor Handbook (CRC Press, New York, 1998).

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Unit cell representation of the crystal structure of Ca14Mg2[SiO4]8 (CMS). Black, red, blue, and orange spheres represent Ca, Mg, Si, and O atoms, respectively. The polyhedral geometry of MgO6 and SiO4 are depicted by blue and red polyhedral, respectively. (b) Rietveld refinement of the powder X-ray diffraction profile of Ca13.7Eu0.3Mg2[SiO4]8. Data (points) and fit (lines), the difference profile, and expected reflection positions are displayed.

Fig. 2
Fig. 2

(a) Excitation and emission spectra of the Ca13.7Eu0.3Mg2[SiO4]8 under 400 nm excitation source with varying Eu2+ concentration x. (b) Position of the emission maximum and (c) relative emission intensity as a function of Eu2+ substitution x.

Fig. 3
Fig. 3

Logarithm of the emission intensity per activator ion (log I/CEu) as a function of logarithm of the Eu2+ concentration (log CEu) in CMS:Eu2+ phosphor (λex = 400 nm).

Fig. 4
Fig. 4

Diffuse-reflectance spectra for (a) CMS and (b) Ca13.7Eu0.3Mg2[SiO4]8 (CMS:Eu2+) under 400 nm excitation.

Fig. 5
Fig. 5

(a) Temperature-dependent emission intensities and (b) activation plots for thermal quenching of commercial Sr2SiO4:Eu2+ (Force4 Corp.) and Ca13.7Eu0.3Mg2[SiO4]8 phosphor using the Arrhenius equation.

Fig. 6
Fig. 6

Luminescence of the InGaN LED + phosphor, under different forward bias currents (indicated): (a) InGaN (λmax = 395 nm) + CMS:Eu2+ + red phosphor. The inset is a photograph of the actual device under self-illumination. (b) CIE chromatic coordinates of the device under different forward bias currents [as in panel (a) and (b)]. The Planckian locus line and the points corresponding to color temperatures of 3500 K and 6500 K are indicated.

Tables (2)

Tables Icon

Table 1 Rietveld refinement and crystal data of Ca13.7Eu0.3Mg2[SiO4]8.

Tables Icon

Table 2 Full set of 9 components of the Ras and the average Ra of a UV LED pumped with CMS:Eu2+ + red phosphor.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ = D q = Z e 2 r 4 6 R 5
R c 2 ( 3 V 4 π X c N ) 1 / 3
P S A = 2 π h | S , A * | H S A | S * , A | 2 g s ( E ) g A ( E ) d E
R c 6 = 0.63 × 10 28 4.8 × 10 16 P E 4 f S ( E ) F A ( E ) d E
I c = k [ 1 + β C θ 3 ]
I c = k 1 β C θ 3
K S = ( 1 R ) 2 2 R
I ( T ) = I 0 1 + A exp ( E k T )

Metrics