Abstract

Fast gain recovery observed in quantum-dot semiconductor-optical-amplifiers (QDSOAs) is useful for amplifying high-speed optical signals. The small but finite slow recovery component can deteriorate the signal amplification due to the accumulation of gain saturation during 10 Gb/s operation. A study of the gain recoveries and pattern effects in signals amplified using a 1.5 μm InAs/InGaAsP QDSOA reveals that the gain recovery is always fast, and pattern-effect-free amplification is observed at the ground state. However, at the excited state, the slow component increases with the current, and significant pattern effects are observed. Simulations of the pattern effects agreed with the observed experimental trends.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer Academic, 2002).
  2. J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98(1), 011107 (2011).
    [CrossRef]
  3. P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 12(6), 594–596 (2000).
    [CrossRef]
  4. S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17(10), 2014–2016 (2005).
    [CrossRef]
  5. M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
    [CrossRef]
  6. T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
    [CrossRef]
  7. S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90(3), 033508 (2007).
    [CrossRef]
  8. N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs/InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
    [CrossRef]
  9. K. J. Han, D. W. Jang, J. H. Kim, C. K. Min, T. H. Joo, Y. S. Lim, D. Lee, and K. J. Yee, “Synchronously pumped optical parametric oscillator based on periodically poled MgO-doped lithium niobate,” Opt. Express 16(8), 5299–5304 (2008).
    [CrossRef] [PubMed]
  10. J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 405–413 (2010).
    [CrossRef]
  11. K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” J. Opt. Commun. 111(5-6), 589–612 (1994).
    [CrossRef]
  12. Y. D. Jang, N. J. Kim, H. Lee, D. Lee, S. H. Pyun, W. G. Jeong, J. W. Jang, D. K. Oh, and J. S. Kim, J.“Effects of band-offset on the carrier lifetime in InAs quantum dots on InP substrates,” J. Appl. Phys. 101(9), 096103 (2007).
    [CrossRef]

2011

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98(1), 011107 (2011).
[CrossRef]

2010

J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 405–413 (2010).
[CrossRef]

2008

2007

Y. D. Jang, N. J. Kim, H. Lee, D. Lee, S. H. Pyun, W. G. Jeong, J. W. Jang, D. K. Oh, and J. S. Kim, J.“Effects of band-offset on the carrier lifetime in InAs quantum dots on InP substrates,” J. Appl. Phys. 101(9), 096103 (2007).
[CrossRef]

S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90(3), 033508 (2007).
[CrossRef]

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs/InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
[CrossRef]

2005

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17(10), 2014–2016 (2005).
[CrossRef]

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

2001

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

2000

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 12(6), 594–596 (2000).
[CrossRef]

1994

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” J. Opt. Commun. 111(5-6), 589–612 (1994).
[CrossRef]

Akiyama, T.

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

Arakawa, Y.

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

Baek, J. S.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98(1), 011107 (2011).
[CrossRef]

Berg, T. W.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

Bimberg, D.

J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 405–413 (2010).
[CrossRef]

S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90(3), 033508 (2007).
[CrossRef]

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17(10), 2014–2016 (2005).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 12(6), 594–596 (2000).
[CrossRef]

Bischoff, S.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

Borri, P.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17(10), 2014–2016 (2005).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 12(6), 594–596 (2000).
[CrossRef]

Darwish, A. M.

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” J. Opt. Commun. 111(5-6), 589–612 (1994).
[CrossRef]

Dommers, S.

S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90(3), 033508 (2007).
[CrossRef]

Ebe, H.

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

Eisenstein, G.

J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 405–413 (2010).
[CrossRef]

Gomis, J.

S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90(3), 033508 (2007).
[CrossRef]

Hall, K. L.

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” J. Opt. Commun. 111(5-6), 589–612 (1994).
[CrossRef]

Han, K. J.

Hatori, N.

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

Heinrichsdorff, F.

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 12(6), 594–596 (2000).
[CrossRef]

Hvam, J. M.

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 12(6), 594–596 (2000).
[CrossRef]

Ippen, E. P.

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” J. Opt. Commun. 111(5-6), 589–612 (1994).
[CrossRef]

Ishida, M.

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

Jang, D. W.

Jang, J. W.

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs/InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
[CrossRef]

Y. D. Jang, N. J. Kim, H. Lee, D. Lee, S. H. Pyun, W. G. Jeong, J. W. Jang, D. K. Oh, and J. S. Kim, J.“Effects of band-offset on the carrier lifetime in InAs quantum dots on InP substrates,” J. Appl. Phys. 101(9), 096103 (2007).
[CrossRef]

Jang, Y. D.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98(1), 011107 (2011).
[CrossRef]

Y. D. Jang, N. J. Kim, H. Lee, D. Lee, S. H. Pyun, W. G. Jeong, J. W. Jang, D. K. Oh, and J. S. Kim, J.“Effects of band-offset on the carrier lifetime in InAs quantum dots on InP substrates,” J. Appl. Phys. 101(9), 096103 (2007).
[CrossRef]

Jeong, W. G.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98(1), 011107 (2011).
[CrossRef]

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs/InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
[CrossRef]

Y. D. Jang, N. J. Kim, H. Lee, D. Lee, S. H. Pyun, W. G. Jeong, J. W. Jang, D. K. Oh, and J. S. Kim, J.“Effects of band-offset on the carrier lifetime in InAs quantum dots on InP substrates,” J. Appl. Phys. 101(9), 096103 (2007).
[CrossRef]

Joo, T. H.

Kim, J.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98(1), 011107 (2011).
[CrossRef]

J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 405–413 (2010).
[CrossRef]

Kim, J. H.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98(1), 011107 (2011).
[CrossRef]

K. J. Han, D. W. Jang, J. H. Kim, C. K. Min, T. H. Joo, Y. S. Lim, D. Lee, and K. J. Yee, “Synchronously pumped optical parametric oscillator based on periodically poled MgO-doped lithium niobate,” Opt. Express 16(8), 5299–5304 (2008).
[CrossRef] [PubMed]

Kim, J. S.

Y. D. Jang, N. J. Kim, H. Lee, D. Lee, S. H. Pyun, W. G. Jeong, J. W. Jang, D. K. Oh, and J. S. Kim, J.“Effects of band-offset on the carrier lifetime in InAs quantum dots on InP substrates,” J. Appl. Phys. 101(9), 096103 (2007).
[CrossRef]

Kim, M. D.

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs/InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
[CrossRef]

Kim, N. J.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98(1), 011107 (2011).
[CrossRef]

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs/InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
[CrossRef]

Y. D. Jang, N. J. Kim, H. Lee, D. Lee, S. H. Pyun, W. G. Jeong, J. W. Jang, D. K. Oh, and J. S. Kim, J.“Effects of band-offset on the carrier lifetime in InAs quantum dots on InP substrates,” J. Appl. Phys. 101(9), 096103 (2007).
[CrossRef]

Laemmlin, M.

S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90(3), 033508 (2007).
[CrossRef]

Langbein, W.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17(10), 2014–2016 (2005).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 12(6), 594–596 (2000).
[CrossRef]

Lee, D.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98(1), 011107 (2011).
[CrossRef]

K. J. Han, D. W. Jang, J. H. Kim, C. K. Min, T. H. Joo, Y. S. Lim, D. Lee, and K. J. Yee, “Synchronously pumped optical parametric oscillator based on periodically poled MgO-doped lithium niobate,” Opt. Express 16(8), 5299–5304 (2008).
[CrossRef] [PubMed]

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs/InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
[CrossRef]

Y. D. Jang, N. J. Kim, H. Lee, D. Lee, S. H. Pyun, W. G. Jeong, J. W. Jang, D. K. Oh, and J. S. Kim, J.“Effects of band-offset on the carrier lifetime in InAs quantum dots on InP substrates,” J. Appl. Phys. 101(9), 096103 (2007).
[CrossRef]

Lee, E. G.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98(1), 011107 (2011).
[CrossRef]

Lee, H.

Y. D. Jang, N. J. Kim, H. Lee, D. Lee, S. H. Pyun, W. G. Jeong, J. W. Jang, D. K. Oh, and J. S. Kim, J.“Effects of band-offset on the carrier lifetime in InAs quantum dots on InP substrates,” J. Appl. Phys. 101(9), 096103 (2007).
[CrossRef]

Lee, H. S.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98(1), 011107 (2011).
[CrossRef]

Lee, J. M.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98(1), 011107 (2011).
[CrossRef]

Lenz, G.

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” J. Opt. Commun. 111(5-6), 589–612 (1994).
[CrossRef]

Lim, Y. S.

Magnusdottir, I.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

Mao, M.-H.

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 12(6), 594–596 (2000).
[CrossRef]

Martinez-Pastor, J.

S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90(3), 033508 (2007).
[CrossRef]

Meuer, C.

J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 405–413 (2010).
[CrossRef]

Min, C. K.

Mork, J.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

Nakata, Y.

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

Oh, D. K.

Y. D. Jang, N. J. Kim, H. Lee, D. Lee, S. H. Pyun, W. G. Jeong, J. W. Jang, D. K. Oh, and J. S. Kim, J.“Effects of band-offset on the carrier lifetime in InAs quantum dots on InP substrates,” J. Appl. Phys. 101(9), 096103 (2007).
[CrossRef]

Oh, J. M.

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs/InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
[CrossRef]

Otsubo, K.

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

Ouyang, D.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17(10), 2014–2016 (2005).
[CrossRef]

Park, J.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98(1), 011107 (2011).
[CrossRef]

Pyun, S. H.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98(1), 011107 (2011).
[CrossRef]

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs/InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
[CrossRef]

Y. D. Jang, N. J. Kim, H. Lee, D. Lee, S. H. Pyun, W. G. Jeong, J. W. Jang, D. K. Oh, and J. S. Kim, J.“Effects of band-offset on the carrier lifetime in InAs quantum dots on InP substrates,” J. Appl. Phys. 101(9), 096103 (2007).
[CrossRef]

Schneider, S.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17(10), 2014–2016 (2005).
[CrossRef]

Sellin, R. L.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17(10), 2014–2016 (2005).
[CrossRef]

Sugawara, M.

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

Temnov, V. V.

S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90(3), 033508 (2007).
[CrossRef]

Woggon, U.

S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90(3), 033508 (2007).
[CrossRef]

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17(10), 2014–2016 (2005).
[CrossRef]

Yamamoto, T.

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

Yee, K. J.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98(1), 011107 (2011).
[CrossRef]

K. J. Han, D. W. Jang, J. H. Kim, C. K. Min, T. H. Joo, Y. S. Lim, D. Lee, and K. J. Yee, “Synchronously pumped optical parametric oscillator based on periodically poled MgO-doped lithium niobate,” Opt. Express 16(8), 5299–5304 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98(1), 011107 (2011).
[CrossRef]

S. Dommers, V. V. Temnov, U. Woggon, J. Gomis, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90(3), 033508 (2007).
[CrossRef]

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs/InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
[CrossRef]

IEEE J. Quantum Electron.

J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 405–413 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 12(6), 594–596 (2000).
[CrossRef]

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17(10), 2014–2016 (2005).
[CrossRef]

J. Appl. Phys.

Y. D. Jang, N. J. Kim, H. Lee, D. Lee, S. H. Pyun, W. G. Jeong, J. W. Jang, D. K. Oh, and J. S. Kim, J.“Effects of band-offset on the carrier lifetime in InAs quantum dots on InP substrates,” J. Appl. Phys. 101(9), 096103 (2007).
[CrossRef]

J. Opt. Commun.

K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” J. Opt. Commun. 111(5-6), 589–612 (1994).
[CrossRef]

J. Phys. D Appl. Phys.

M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005).
[CrossRef]

Opt. Express

Other

M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer Academic, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

A heterodyned pump–probe setup. OPO: optical parametric oscillator, PBS: polarization beam splitter, PC: polarization controller, AOM: fiber pigtailed acousto-optic modulator, DCF: dispersion compensating fiber.

Fig. 2
Fig. 2

Gain recovery curves. Operation current dependence at the (a) GS and (b) ES. Note the significant increase in the slow components at the ES as the current increased.

Fig. 3
Fig. 3

The extracted actual gain recovery curves. Operating current dependence at the (a) GS and (b) ES.

Fig. 4
Fig. 4

The setup for measuring eye diagrams and observing the pattern effects in the amplified signals.

Fig. 5
Fig. 5

Eye diagrams measured at 1535 nm (GS) for the (a) back-to-back, bias current of (b) 300 mA, (c) 500 mA, and (d) 600 mA.

Fig. 6
Fig. 6

Eye diagrams measured at 1494 nm (ES). (a) Back to back, (b) bias current of 200 mA, (c) 300 mA, (d) 400 mA, (e) 500 mA, and (f) 600 mA.

Fig. 7
Fig. 7

Calculated normalized pulse patterns (10 Gb/s) for a given fast gain saturation (0.2 dB): (a) back-to-back pulse trains, (b) calculated pulse pattern at the ES, and (c) calculated pulse pattern at the GS.

Fig. 8
Fig. 8

Calculated gain charges due to pulse trains at the ES (a) and at the GS (b) for a given average gain saturation under quasi-CW operation.

Fig. 9
Fig. 9

Calculated amplified pulse trains at the ES (a) and at the GS (b) for a given average gain saturation under quasi-CW operation.

Metrics