Abstract

Four-wave-mixing (FWM) radiation is generated between the hyperfine structures of the 5D and 5P states in a thermally broadened rubidium atomic vapor using resonant atomic coherence. Background-free unidirectional signals having narrow spectral linewidths are isolated and experimentally studied in the frequency domain, and the effects of the driving beam parameters on the properties of the radiation are discussed. The radiation has several new properties compared to traditional FWM radiations generated between the 5P and 5S states. The high-resolution signals obtained in this method could make it favorable in spectroscopic procedures that rely on two-photon fluorescence.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
    [CrossRef]
  2. E. Arimondo, Progress in Optics, E. Wolf, ed. (Elsevier Science, Amsterdam, 1996), 257–354.
  3. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
    [CrossRef] [PubMed]
  4. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
    [CrossRef] [PubMed]
  5. P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20(9), 982–984 (1995).
    [CrossRef] [PubMed]
  6. Y.-Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21(14), 1064–1066 (1996).
    [CrossRef] [PubMed]
  7. A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83(20), 4049–4052 (1999).
    [CrossRef]
  8. Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Controlling four-wave and six-wave mixing processes in multilevel atomic systems,” Appl. Phys. Lett. 91(22), 221108 (2007).
    [CrossRef]
  9. J. Wen, S. Du, Y. Zhang, M. Xiao, and M. H. Rubin, “Nonclassical light generation via a four-level inverted-Y system,” Phys. Rev. A 77(3), 033816 (2008).
    [CrossRef]
  10. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
    [CrossRef] [PubMed]
  11. Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
    [CrossRef] [PubMed]
  12. U. Khadka, H. Zheng, and M. Xiao, “Interferometric control of parametrically amplified waveforms,” Phys. Rev. A 84(4), 043814 (2011).
    [CrossRef]
  13. E. F. McCormack and E. Sarajlic, “Polarization effects in quantum coherences probed by two-color, resonant four-wave mixing in the time domain,” Phys. Rev. A 63(2), 023406 (2001).
    [CrossRef]
  14. S. Williams, E. A. Rohlfing, L. A. Rahn, and R. Zare, “Two-color resonant four-wave mixing: Analytical expressions for signal intensity,” J. Chem. Phys. 106(8), 3090–3102 (1997).
    [CrossRef]
  15. H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
    [CrossRef]
  16. J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
    [CrossRef] [PubMed]
  17. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically- induced transparency,” Opt. Commun. 119(1-2), 61–68 (1995).
    [CrossRef]
  18. J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
    [CrossRef] [PubMed]
  19. H. R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84(5), 053827 (2011).
    [CrossRef]
  20. R. Gupta, S. Chang, C. Tai, and W. Happer, “Cascade radio-frequency spectroscopy of excited S and D states of rubidium; Anomalous D-state hyperfine structure,” Phys. Rev. Lett. 29(11), 695–698 (1972).
    [CrossRef]
  21. J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33(3), 128–131 (1974).
    [CrossRef]
  22. B. Chatel, J. Degert, S. Stock, and B. Girard, “Competition between sequential and direct paths in a two-photon transition,” Phys. Rev. A 68(4), 041402 (2003).
    [CrossRef]
  23. M. C. Stowe, A. Pe’er, and J. Ye, “Control of four-level quantum coherence via discrete spectral shaping of an optical frequency comb,” Phys. Rev. Lett. 100(20), 203001 (2008).
    [CrossRef] [PubMed]
  24. B. Lü, W. H. Burkett, and M. Xiao, “Nondegenerate four-wave mixing in a double-Lambda system under the influence of coherent population trapping,” Opt. Lett. 23(10), 804–806 (1998).
    [CrossRef] [PubMed]
  25. H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70(6), 061804 (2004).
    [CrossRef]

2011 (2)

U. Khadka, H. Zheng, and M. Xiao, “Interferometric control of parametrically amplified waveforms,” Phys. Rev. A 84(4), 043814 (2011).
[CrossRef]

H. R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84(5), 053827 (2011).
[CrossRef]

2009 (1)

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[CrossRef] [PubMed]

2008 (3)

J. Wen, S. Du, Y. Zhang, M. Xiao, and M. H. Rubin, “Nonclassical light generation via a four-level inverted-Y system,” Phys. Rev. A 77(3), 033816 (2008).
[CrossRef]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

M. C. Stowe, A. Pe’er, and J. Ye, “Control of four-level quantum coherence via discrete spectral shaping of an optical frequency comb,” Phys. Rev. Lett. 100(20), 203001 (2008).
[CrossRef] [PubMed]

2007 (1)

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Controlling four-wave and six-wave mixing processes in multilevel atomic systems,” Appl. Phys. Lett. 91(22), 221108 (2007).
[CrossRef]

2004 (2)

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
[CrossRef]

H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70(6), 061804 (2004).
[CrossRef]

2003 (1)

B. Chatel, J. Degert, S. Stock, and B. Girard, “Competition between sequential and direct paths in a two-photon transition,” Phys. Rev. A 68(4), 041402 (2003).
[CrossRef]

2001 (1)

E. F. McCormack and E. Sarajlic, “Polarization effects in quantum coherences probed by two-color, resonant four-wave mixing in the time domain,” Phys. Rev. A 63(2), 023406 (2001).
[CrossRef]

1999 (1)

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83(20), 4049–4052 (1999).
[CrossRef]

1998 (1)

1997 (2)

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

S. Williams, E. A. Rohlfing, L. A. Rahn, and R. Zare, “Two-color resonant four-wave mixing: Analytical expressions for signal intensity,” J. Chem. Phys. 106(8), 3090–3102 (1997).
[CrossRef]

1996 (2)

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[CrossRef] [PubMed]

Y.-Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21(14), 1064–1066 (1996).
[CrossRef] [PubMed]

1995 (4)

P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20(9), 982–984 (1995).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically- induced transparency,” Opt. Commun. 119(1-2), 61–68 (1995).
[CrossRef]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

1974 (1)

J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33(3), 128–131 (1974).
[CrossRef]

1972 (1)

R. Gupta, S. Chang, C. Tai, and W. Happer, “Cascade radio-frequency spectroscopy of excited S and D states of rubidium; Anomalous D-state hyperfine structure,” Phys. Rev. Lett. 29(11), 695–698 (1972).
[CrossRef]

Anderson, B.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[CrossRef] [PubMed]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Controlling four-wave and six-wave mixing processes in multilevel atomic systems,” Appl. Phys. Lett. 91(22), 221108 (2007).
[CrossRef]

Bjorkholm, J. E.

J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33(3), 128–131 (1974).
[CrossRef]

Boyer, V.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Burkett, W. H.

Chang, S.

R. Gupta, S. Chang, C. Tai, and W. Happer, “Cascade radio-frequency spectroscopy of excited S and D states of rubidium; Anomalous D-state hyperfine structure,” Phys. Rev. Lett. 29(11), 695–698 (1972).
[CrossRef]

Chatel, B.

B. Chatel, J. Degert, S. Stock, and B. Girard, “Competition between sequential and direct paths in a two-photon transition,” Phys. Rev. A 68(4), 041402 (2003).
[CrossRef]

Cronin-Golomb, M.

Degert, J.

B. Chatel, J. Degert, S. Stock, and B. Girard, “Competition between sequential and direct paths in a two-photon transition,” Phys. Rev. A 68(4), 041402 (2003).
[CrossRef]

Donoghue, J.

Du, S.

J. Wen, S. Du, Y. Zhang, M. Xiao, and M. H. Rubin, “Nonclassical light generation via a four-level inverted-Y system,” Phys. Rev. A 77(3), 033816 (2008).
[CrossRef]

Dunn, M. H.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically- induced transparency,” Opt. Commun. 119(1-2), 61–68 (1995).
[CrossRef]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

Fulton, D. J.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically- induced transparency,” Opt. Commun. 119(1-2), 61–68 (1995).
[CrossRef]

Gea-Banacloche, J.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

Girard, B.

B. Chatel, J. Degert, S. Stock, and B. Girard, “Competition between sequential and direct paths in a two-photon transition,” Phys. Rev. A 68(4), 041402 (2003).
[CrossRef]

Gupta, R.

R. Gupta, S. Chang, C. Tai, and W. Happer, “Cascade radio-frequency spectroscopy of excited S and D states of rubidium; Anomalous D-state hyperfine structure,” Phys. Rev. Lett. 29(11), 695–698 (1972).
[CrossRef]

Happer, W.

R. Gupta, S. Chang, C. Tai, and W. Happer, “Cascade radio-frequency spectroscopy of excited S and D states of rubidium; Anomalous D-state hyperfine structure,” Phys. Rev. Lett. 29(11), 695–698 (1972).
[CrossRef]

Harris, S. E.

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

Hemmer, P. R.

Hernandez, G.

H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70(6), 061804 (2004).
[CrossRef]

Imamoglu, A.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

Jin, S.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
[CrossRef] [PubMed]

Kang, H.

H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70(6), 061804 (2004).
[CrossRef]

Katz, D. P.

Keitel, C. H.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[CrossRef] [PubMed]

Khadka, U.

U. Khadka, H. Zheng, and M. Xiao, “Interferometric control of parametrically amplified waveforms,” Phys. Rev. A 84(4), 043814 (2011).
[CrossRef]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[CrossRef] [PubMed]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Controlling four-wave and six-wave mixing processes in multilevel atomic systems,” Appl. Phys. Lett. 91(22), 221108 (2007).
[CrossRef]

Kim, J. B.

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
[CrossRef]

Knight, P. L.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[CrossRef] [PubMed]

Kumar, P.

Lee, L.

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
[CrossRef]

Lee, W. K.

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
[CrossRef]

Lett, P. D.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Li, Y.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
[CrossRef] [PubMed]

Li, Y.-Q.

Liao, P. F.

J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33(3), 128–131 (1974).
[CrossRef]

Lü, B.

Lukin, M. D.

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83(20), 4049–4052 (1999).
[CrossRef]

Marangos, J. P.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[CrossRef] [PubMed]

Marino, A. M.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

McCormack, E. F.

E. F. McCormack and E. Sarajlic, “Polarization effects in quantum coherences probed by two-color, resonant four-wave mixing in the time domain,” Phys. Rev. A 63(2), 023406 (2001).
[CrossRef]

Moon, H. S.

H. R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84(5), 053827 (2011).
[CrossRef]

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
[CrossRef]

Moseley, R. R.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically- induced transparency,” Opt. Commun. 119(1-2), 61–68 (1995).
[CrossRef]

Noh, H. R.

H. R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84(5), 053827 (2011).
[CrossRef]

Pe’er, A.

M. C. Stowe, A. Pe’er, and J. Ye, “Control of four-level quantum coherence via discrete spectral shaping of an optical frequency comb,” Phys. Rev. Lett. 100(20), 203001 (2008).
[CrossRef] [PubMed]

Petch, J. C.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[CrossRef] [PubMed]

Pooser, R. C.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Rahn, L. A.

S. Williams, E. A. Rohlfing, L. A. Rahn, and R. Zare, “Two-color resonant four-wave mixing: Analytical expressions for signal intensity,” J. Chem. Phys. 106(8), 3090–3102 (1997).
[CrossRef]

Rohlfing, E. A.

S. Williams, E. A. Rohlfing, L. A. Rahn, and R. Zare, “Two-color resonant four-wave mixing: Analytical expressions for signal intensity,” J. Chem. Phys. 106(8), 3090–3102 (1997).
[CrossRef]

Rubin, M. H.

J. Wen, S. Du, Y. Zhang, M. Xiao, and M. H. Rubin, “Nonclassical light generation via a four-level inverted-Y system,” Phys. Rev. A 77(3), 033816 (2008).
[CrossRef]

Sarajlic, E.

E. F. McCormack and E. Sarajlic, “Polarization effects in quantum coherences probed by two-color, resonant four-wave mixing in the time domain,” Phys. Rev. A 63(2), 023406 (2001).
[CrossRef]

Scully, M. O.

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83(20), 4049–4052 (1999).
[CrossRef]

Shahriar, M. S.

Shepherd, S.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically- induced transparency,” Opt. Commun. 119(1-2), 61–68 (1995).
[CrossRef]

Sinclair, B. D.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically- induced transparency,” Opt. Commun. 119(1-2), 61–68 (1995).
[CrossRef]

Stock, S.

B. Chatel, J. Degert, S. Stock, and B. Girard, “Competition between sequential and direct paths in a two-photon transition,” Phys. Rev. A 68(4), 041402 (2003).
[CrossRef]

Stowe, M. C.

M. C. Stowe, A. Pe’er, and J. Ye, “Control of four-level quantum coherence via discrete spectral shaping of an optical frequency comb,” Phys. Rev. Lett. 100(20), 203001 (2008).
[CrossRef] [PubMed]

Tai, C.

R. Gupta, S. Chang, C. Tai, and W. Happer, “Cascade radio-frequency spectroscopy of excited S and D states of rubidium; Anomalous D-state hyperfine structure,” Phys. Rev. Lett. 29(11), 695–698 (1972).
[CrossRef]

Wen, J.

J. Wen, S. Du, Y. Zhang, M. Xiao, and M. H. Rubin, “Nonclassical light generation via a four-level inverted-Y system,” Phys. Rev. A 77(3), 033816 (2008).
[CrossRef]

Williams, S.

S. Williams, E. A. Rohlfing, L. A. Rahn, and R. Zare, “Two-color resonant four-wave mixing: Analytical expressions for signal intensity,” J. Chem. Phys. 106(8), 3090–3102 (1997).
[CrossRef]

Xiao, M.

U. Khadka, H. Zheng, and M. Xiao, “Interferometric control of parametrically amplified waveforms,” Phys. Rev. A 84(4), 043814 (2011).
[CrossRef]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[CrossRef] [PubMed]

J. Wen, S. Du, Y. Zhang, M. Xiao, and M. H. Rubin, “Nonclassical light generation via a four-level inverted-Y system,” Phys. Rev. A 77(3), 033816 (2008).
[CrossRef]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Controlling four-wave and six-wave mixing processes in multilevel atomic systems,” Appl. Phys. Lett. 91(22), 221108 (2007).
[CrossRef]

B. Lü, W. H. Burkett, and M. Xiao, “Nondegenerate four-wave mixing in a double-Lambda system under the influence of coherent population trapping,” Opt. Lett. 23(10), 804–806 (1998).
[CrossRef] [PubMed]

Y.-Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21(14), 1064–1066 (1996).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
[CrossRef] [PubMed]

Ye, J.

M. C. Stowe, A. Pe’er, and J. Ye, “Control of four-level quantum coherence via discrete spectral shaping of an optical frequency comb,” Phys. Rev. Lett. 100(20), 203001 (2008).
[CrossRef] [PubMed]

Zare, R.

S. Williams, E. A. Rohlfing, L. A. Rahn, and R. Zare, “Two-color resonant four-wave mixing: Analytical expressions for signal intensity,” J. Chem. Phys. 106(8), 3090–3102 (1997).
[CrossRef]

Zhang, Y.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[CrossRef] [PubMed]

J. Wen, S. Du, Y. Zhang, M. Xiao, and M. H. Rubin, “Nonclassical light generation via a four-level inverted-Y system,” Phys. Rev. A 77(3), 033816 (2008).
[CrossRef]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Controlling four-wave and six-wave mixing processes in multilevel atomic systems,” Appl. Phys. Lett. 91(22), 221108 (2007).
[CrossRef]

Zheng, H.

U. Khadka, H. Zheng, and M. Xiao, “Interferometric control of parametrically amplified waveforms,” Phys. Rev. A 84(4), 043814 (2011).
[CrossRef]

Zhu, Y.

H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70(6), 061804 (2004).
[CrossRef]

Zibrov, A. S.

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83(20), 4049–4052 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Controlling four-wave and six-wave mixing processes in multilevel atomic systems,” Appl. Phys. Lett. 91(22), 221108 (2007).
[CrossRef]

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
[CrossRef]

J. Chem. Phys. (1)

S. Williams, E. A. Rohlfing, L. A. Rahn, and R. Zare, “Two-color resonant four-wave mixing: Analytical expressions for signal intensity,” J. Chem. Phys. 106(8), 3090–3102 (1997).
[CrossRef]

Opt. Commun. (1)

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically- induced transparency,” Opt. Commun. 119(1-2), 61–68 (1995).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (8)

H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70(6), 061804 (2004).
[CrossRef]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
[CrossRef] [PubMed]

B. Chatel, J. Degert, S. Stock, and B. Girard, “Competition between sequential and direct paths in a two-photon transition,” Phys. Rev. A 68(4), 041402 (2003).
[CrossRef]

J. Wen, S. Du, Y. Zhang, M. Xiao, and M. H. Rubin, “Nonclassical light generation via a four-level inverted-Y system,” Phys. Rev. A 77(3), 033816 (2008).
[CrossRef]

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[CrossRef] [PubMed]

H. R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84(5), 053827 (2011).
[CrossRef]

U. Khadka, H. Zheng, and M. Xiao, “Interferometric control of parametrically amplified waveforms,” Phys. Rev. A 84(4), 043814 (2011).
[CrossRef]

E. F. McCormack and E. Sarajlic, “Polarization effects in quantum coherences probed by two-color, resonant four-wave mixing in the time domain,” Phys. Rev. A 63(2), 023406 (2001).
[CrossRef]

Phys. Rev. Lett. (7)

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[CrossRef] [PubMed]

R. Gupta, S. Chang, C. Tai, and W. Happer, “Cascade radio-frequency spectroscopy of excited S and D states of rubidium; Anomalous D-state hyperfine structure,” Phys. Rev. Lett. 29(11), 695–698 (1972).
[CrossRef]

J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33(3), 128–131 (1974).
[CrossRef]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83(20), 4049–4052 (1999).
[CrossRef]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

M. C. Stowe, A. Pe’er, and J. Ye, “Control of four-level quantum coherence via discrete spectral shaping of an optical frequency comb,” Phys. Rev. Lett. 100(20), 203001 (2008).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Science (1)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Other (1)

E. Arimondo, Progress in Optics, E. Wolf, ed. (Elsevier Science, Amsterdam, 1996), 257–354.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Simplified three-level ladder-type configuration in 85Rb that is coherently driven in the FWM process; |g>, |i> and |e> stand for the ground, intermediate and excited states, respectively. E1, E1 and E2 are external driving beams from laser sources, while Ef is the atom-radiated FWM signal that is parametrically amplified from the vacuum mode. (b) Schematic of the experimental configuration showing the directions and polarizations of the four fields. (c)-(f) Realistic energy level diagram showing the hyperfine (hf) levels of each driven state, as well as the incoherent decay channels (wavy arrows) between various combinations of driven hf levels: [f, f′, f′′] = (c) [3,2,2], (d) [3,3,4], (e) [3,4,3], and (f) [3,4,4]. The single-resonance decay channels are drawn first, followed by the double-resonance decay channels. The number of single-resonance and double-resonance optical pumping channels is different in the various cases. The spacings between the energy levels are not drawn to scale.

Fig. 2
Fig. 2

FWM signal line shape, linewidth and efficiency at four different intermediate frequency detunings, placed at intervals of 500 MHz. All other experimental parameters are constant in the four cases. The Doppler-broadened absorption linewidth of the corresponding ground state (hf = 3 of 85Rb, 5S1/2) is also shown for reference.

Fig. 3
Fig. 3

(Color online) TPR FWM signals corresponding to different values of Δ1, separated by 100 MHz each. The energy levels driven are |g> = 5S1/2, hf = 3, |i> = 5P3/2 and |e> = 5D3/2. At each value of the frequency detuning, the FWM signal is a convolution of a sharp, strong peak and a broad, weak peak, the maximum intensities of which are denoted by a blue square and a red dot, respectively. Each of the two signal peak trends are connected by lines to aid the eye. The two peak values corresponding to a given convolution at a given frequency detuning are connected by a solid black line. The horizontal (vertical) dotted lines identify the intensities (intermediate frequency detunings) of the maximas and minimas of the signal convolution’s two peaks. (a) P1 = 7.4 mW, P1′ = 11.6 mW, P2 = 38 mW (b) P1 = 3 mW, P1′ = 4 mW, P2 = 55 mW. Note the change of scale in the intensity axes.

Fig. 4
Fig. 4

(The meanings of the dots, squares and lines in (b) and (d) are the same as in Fig. 3.) The beam powers are P1 = 7.4 mW, P1′ = 11.6 mW, P2 = 38 mW. (a) and (b) The ground state used is hf = 2 of 85Rb, 5S1/2, with |i> = 5P3/2 and |e> = 5D3/2. (c) and (d) The ground state hf = 3 of 85Rb, 5S1/2 is used with |i> = 5P3/2, but with |e> = 5D5/2 and ω2 = 775.978 nm, where the hf levels are inverted. Note the change of scale in the intensity axes. In (a) and (c), the FWM transitions with the least number of decay channels are shown.

Fig. 5
Fig. 5

Dependence of the FWM signal strength on the power P1′ at three different values of Δ1 within the Doppler-broadened D2 absorption linewidth. The powers of the other two beams are held fixed at P1 = 3 mW and P2 = 22 mW. The three chosen values of Δ1, also shown in the inset, correspond to where (i) signal maxima occurs at the blue detuned region (blue dots), (ii) signal maxima occurs at the red detuned region (red triangles), and (iii) signal minima occurs towards the center-red detuned region (black squares). The EIT peak visible in the inset corresponds to case (iii). The three signal trends are connected by lines to aid the eye.

Metrics