Abstract

We report on the realization of an intracavity high harmonic source with a cutoff above 30 eV. The EUV source is based on a high power, hard-aperture, Kerr-lens mode-locked Ti:sapphire oscillator with a repetition rate of 9.4 MHz. The laser is operated in the net negative dispersion regime resulting in intracavity pulses as short as 17 fs with 1 µJ pulse energy. In a second intracavity focus, intensity more than 1014 W/cm2 has been achieved, which is sufficient for high harmonic generation in a Xenon gas jet.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433(7026), 596–596 (2005).
    [CrossRef] [PubMed]
  2. E. Seres, J. Seres, and Ch. Spielmann, “X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation,” Appl. Phys. Lett. 89(18), 181919 (2006).
    [CrossRef]
  3. E. Seres and C. Spielmann, “Ultrafast soft x-ray absorption spectroscopy with sub-20-fs resolution,” Appl. Phys. Lett. 91(12), 121919 (2007).
    [CrossRef]
  4. E. Seres and C. Spielmann, “Time-resolved optical pump x-ray absorption probe spectroscopy in the range up to 1 keV with 20 fs resolution,” J. Mod. Opt. 55(16), 2643–2651 (2008).
    [CrossRef]
  5. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
    [CrossRef] [PubMed]
  6. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19), 193201 (2005).
    [CrossRef] [PubMed]
  7. A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
    [CrossRef] [PubMed]
  8. D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
    [CrossRef]
  9. J. Lee, D. R. Carlson, and R. J. Jones, “Optimizing intracavity high harmonic generation for XUV fs frequency combs,” Opt. Express 19(23), 23315–23326 (2011).
    [CrossRef] [PubMed]
  10. T. J. Hammond, A. K. Mills, and D. J. Jones, “Near-threshold harmonics from a femtosecond enhancement cavity-based EUV source: effects of multiple quantum pathways on spatial profile and yield,” Opt. Express 19(25), 24871–24883 (2011).
    [CrossRef] [PubMed]
  11. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [CrossRef] [PubMed]
  12. I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
    [CrossRef]
  13. D. Herriott, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3(4), 523–526 (1964).
    [CrossRef]
  14. A. Fuerbach, G. A. Fernandez, A. Apolonski, E. Seres, T. Fuji, and F. Krausz, “Generation of sub-30-fs pulses from a scaleable high-energy oscillator,” Proc. SPIE 5340, 4–11 (2004).
    [CrossRef]
  15. E. Seres and Ch. Spielmann, “Development of an intracavity EUV Source based on a high power Ti:sapphire oscillator,” Proc. SPIE 7721, 77210I, 77210I-7 (2010).
    [CrossRef]
  16. T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
    [CrossRef]
  17. A. Agnesi, E. Piccinini, and G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr 4f:forsterite lasers,” Opt. Commun. 135(1-3), 77–82 (1997).
    [CrossRef]
  18. J. Herrmann, “Theory of Kerr-lens mode locking: role of self-focusing and radially varying gain,” J. Opt. Soc. Am. B 11(3), 498–512 (1994).
    [CrossRef]
  19. http://henke.lbl.gov/optical_constants/ .
  20. G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, and M. Lewis, “The soft x-ray detection efficiency of coated microchannel plates,” Nucl. Instrum. Methods Phys. Res. 224(1-2), 272–286 (1984).
    [CrossRef]

2011 (3)

2010 (1)

E. Seres and Ch. Spielmann, “Development of an intracavity EUV Source based on a high power Ti:sapphire oscillator,” Proc. SPIE 7721, 77210I, 77210I-7 (2010).
[CrossRef]

2009 (1)

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
[CrossRef]

2008 (3)

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

E. Seres and C. Spielmann, “Time-resolved optical pump x-ray absorption probe spectroscopy in the range up to 1 keV with 20 fs resolution,” J. Mod. Opt. 55(16), 2643–2651 (2008).
[CrossRef]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

2007 (1)

E. Seres and C. Spielmann, “Ultrafast soft x-ray absorption spectroscopy with sub-20-fs resolution,” Appl. Phys. Lett. 91(12), 121919 (2007).
[CrossRef]

2006 (1)

E. Seres, J. Seres, and Ch. Spielmann, “X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation,” Appl. Phys. Lett. 89(18), 181919 (2006).
[CrossRef]

2005 (3)

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433(7026), 596–596 (2005).
[CrossRef] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19), 193201 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Fuerbach, G. A. Fernandez, A. Apolonski, E. Seres, T. Fuji, and F. Krausz, “Generation of sub-30-fs pulses from a scaleable high-energy oscillator,” Proc. SPIE 5340, 4–11 (2004).
[CrossRef]

2003 (1)

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
[CrossRef]

1997 (1)

A. Agnesi, E. Piccinini, and G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr 4f:forsterite lasers,” Opt. Commun. 135(1-3), 77–82 (1997).
[CrossRef]

1994 (1)

1984 (1)

G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, and M. Lewis, “The soft x-ray detection efficiency of coated microchannel plates,” Nucl. Instrum. Methods Phys. Res. 224(1-2), 272–286 (1984).
[CrossRef]

1964 (1)

Agnesi, A.

A. Agnesi, E. Piccinini, and G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr 4f:forsterite lasers,” Opt. Commun. 135(1-3), 77–82 (1997).
[CrossRef]

Apolonski, A.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

A. Fuerbach, G. A. Fernandez, A. Apolonski, E. Seres, T. Fuji, and F. Krausz, “Generation of sub-30-fs pulses from a scaleable high-energy oscillator,” Proc. SPIE 5340, 4–11 (2004).
[CrossRef]

Barstow, M. A.

G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, and M. Lewis, “The soft x-ray detection efficiency of coated microchannel plates,” Nucl. Instrum. Methods Phys. Res. 224(1-2), 272–286 (1984).
[CrossRef]

Carlson, D. R.

Choi, J.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[CrossRef]

Drexler, W.

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
[CrossRef]

Fernandez, A.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Fernandez, G. A.

A. Fuerbach, G. A. Fernandez, A. Apolonski, E. Seres, T. Fuji, and F. Krausz, “Generation of sub-30-fs pulses from a scaleable high-energy oscillator,” Proc. SPIE 5340, 4–11 (2004).
[CrossRef]

Fraser, G. W.

G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, and M. Lewis, “The soft x-ray detection efficiency of coated microchannel plates,” Nucl. Instrum. Methods Phys. Res. 224(1-2), 272–286 (1984).
[CrossRef]

Fuerbach, A.

A. Fuerbach, G. A. Fernandez, A. Apolonski, E. Seres, T. Fuji, and F. Krausz, “Generation of sub-30-fs pulses from a scaleable high-energy oscillator,” Proc. SPIE 5340, 4–11 (2004).
[CrossRef]

Fuji, T.

A. Fuerbach, G. A. Fernandez, A. Apolonski, E. Seres, T. Fuji, and F. Krausz, “Generation of sub-30-fs pulses from a scaleable high-energy oscillator,” Proc. SPIE 5340, 4–11 (2004).
[CrossRef]

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
[CrossRef]

Gaarde, M. B.

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
[CrossRef]

Gohle, C.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Gohle, Ch.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Graf, R.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Hammond, T. J.

Hänsch, T. W.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Herriott, D.

Herrmann, J.

Herrmann, M.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Holzwarth, R.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Hostetter, J.

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
[CrossRef]

Jin, J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Jones, D. J.

Jones, R. J.

J. Lee, D. R. Carlson, and R. J. Jones, “Optimizing intracavity high harmonic generation for XUV fs frequency combs,” Opt. Express 19(23), 23315–23326 (2011).
[CrossRef] [PubMed]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19), 193201 (2005).
[CrossRef] [PubMed]

Kim, S.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[CrossRef]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, S.-W.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[CrossRef]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.-J.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[CrossRef]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kling, M. F.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[CrossRef]

Kogelnik, H.

Kompfner, R.

Krausz, F.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433(7026), 596–596 (2005).
[CrossRef] [PubMed]

A. Fuerbach, G. A. Fernandez, A. Apolonski, E. Seres, T. Fuji, and F. Krausz, “Generation of sub-30-fs pulses from a scaleable high-energy oscillator,” Proc. SPIE 5340, 4–11 (2004).
[CrossRef]

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
[CrossRef]

Lee, D.-H.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[CrossRef]

Lee, J.

Lewis, M.

G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, and M. Lewis, “The soft x-ray detection efficiency of coated microchannel plates,” Nucl. Instrum. Methods Phys. Res. 224(1-2), 272–286 (1984).
[CrossRef]

Mills, A. K.

Moll, K. D.

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19), 193201 (2005).
[CrossRef] [PubMed]

Ozawa, A.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Park, I.-Y.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[CrossRef]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Pearson, J. F.

G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, and M. Lewis, “The soft x-ray detection efficiency of coated microchannel plates,” Nucl. Instrum. Methods Phys. Res. 224(1-2), 272–286 (1984).
[CrossRef]

Pervak, V.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Piccinini, E.

A. Agnesi, E. Piccinini, and G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr 4f:forsterite lasers,” Opt. Commun. 135(1-3), 77–82 (1997).
[CrossRef]

Rauschenberger, J.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Reali, G. C.

A. Agnesi, E. Piccinini, and G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr 4f:forsterite lasers,” Opt. Commun. 135(1-3), 77–82 (1997).
[CrossRef]

Schafer, K. J.

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
[CrossRef]

Schibli, T. R.

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
[CrossRef]

Schuessler, H. A.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Scrinzi, A.

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433(7026), 596–596 (2005).
[CrossRef] [PubMed]

Seres, E.

E. Seres and Ch. Spielmann, “Development of an intracavity EUV Source based on a high power Ti:sapphire oscillator,” Proc. SPIE 7721, 77210I, 77210I-7 (2010).
[CrossRef]

E. Seres and C. Spielmann, “Time-resolved optical pump x-ray absorption probe spectroscopy in the range up to 1 keV with 20 fs resolution,” J. Mod. Opt. 55(16), 2643–2651 (2008).
[CrossRef]

E. Seres and C. Spielmann, “Ultrafast soft x-ray absorption spectroscopy with sub-20-fs resolution,” Appl. Phys. Lett. 91(12), 121919 (2007).
[CrossRef]

E. Seres, J. Seres, and Ch. Spielmann, “X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation,” Appl. Phys. Lett. 89(18), 181919 (2006).
[CrossRef]

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433(7026), 596–596 (2005).
[CrossRef] [PubMed]

A. Fuerbach, G. A. Fernandez, A. Apolonski, E. Seres, T. Fuji, and F. Krausz, “Generation of sub-30-fs pulses from a scaleable high-energy oscillator,” Proc. SPIE 5340, 4–11 (2004).
[CrossRef]

Seres, J.

E. Seres, J. Seres, and Ch. Spielmann, “X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation,” Appl. Phys. Lett. 89(18), 181919 (2006).
[CrossRef]

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433(7026), 596–596 (2005).
[CrossRef] [PubMed]

Spielmann, C.

E. Seres and C. Spielmann, “Time-resolved optical pump x-ray absorption probe spectroscopy in the range up to 1 keV with 20 fs resolution,” J. Mod. Opt. 55(16), 2643–2651 (2008).
[CrossRef]

E. Seres and C. Spielmann, “Ultrafast soft x-ray absorption spectroscopy with sub-20-fs resolution,” Appl. Phys. Lett. 91(12), 121919 (2007).
[CrossRef]

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433(7026), 596–596 (2005).
[CrossRef] [PubMed]

Spielmann, Ch.

E. Seres and Ch. Spielmann, “Development of an intracavity EUV Source based on a high power Ti:sapphire oscillator,” Proc. SPIE 7721, 77210I, 77210I-7 (2010).
[CrossRef]

E. Seres, J. Seres, and Ch. Spielmann, “X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation,” Appl. Phys. Lett. 89(18), 181919 (2006).
[CrossRef]

Stingl, A.

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
[CrossRef]

Stockman, M. I.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[CrossRef]

Streli, C.

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433(7026), 596–596 (2005).
[CrossRef] [PubMed]

Tate, J. L.

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
[CrossRef]

Tempea, G.

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433(7026), 596–596 (2005).
[CrossRef] [PubMed]

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
[CrossRef]

Thorpe, M. J.

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19), 193201 (2005).
[CrossRef] [PubMed]

Udem, T.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Udem, Th.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Unterhuber, A.

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
[CrossRef]

Verhoef, A. J.

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433(7026), 596–596 (2005).
[CrossRef] [PubMed]

Walker, D. R.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Whiteley, M. J.

G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, and M. Lewis, “The soft x-ray detection efficiency of coated microchannel plates,” Nucl. Instrum. Methods Phys. Res. 224(1-2), 272–286 (1984).
[CrossRef]

Wobrauschek, P.

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433(7026), 596–596 (2005).
[CrossRef] [PubMed]

Yakovlev, V.

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433(7026), 596–596 (2005).
[CrossRef] [PubMed]

Yakovlev, V. S.

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
[CrossRef]

Ye, J.

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
[CrossRef]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19), 193201 (2005).
[CrossRef] [PubMed]

Yost, D. C.

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

T. Fuji, A. Unterhuber, V. S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, “Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,” Appl. Phys. B 77(1), 125–128 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

E. Seres, J. Seres, and Ch. Spielmann, “X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation,” Appl. Phys. Lett. 89(18), 181919 (2006).
[CrossRef]

E. Seres and C. Spielmann, “Ultrafast soft x-ray absorption spectroscopy with sub-20-fs resolution,” Appl. Phys. Lett. 91(12), 121919 (2007).
[CrossRef]

J. Mod. Opt. (1)

E. Seres and C. Spielmann, “Time-resolved optical pump x-ray absorption probe spectroscopy in the range up to 1 keV with 20 fs resolution,” J. Mod. Opt. 55(16), 2643–2651 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[CrossRef]

Nat. Phys. (1)

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
[CrossRef]

Nature (3)

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[CrossRef] [PubMed]

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433(7026), 596–596 (2005).
[CrossRef] [PubMed]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res. (1)

G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, and M. Lewis, “The soft x-ray detection efficiency of coated microchannel plates,” Nucl. Instrum. Methods Phys. Res. 224(1-2), 272–286 (1984).
[CrossRef]

Opt. Commun. (1)

A. Agnesi, E. Piccinini, and G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr 4f:forsterite lasers,” Opt. Commun. 135(1-3), 77–82 (1997).
[CrossRef]

Opt. Express (2)

Phys. Rev. Lett. (2)

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19), 193201 (2005).
[CrossRef] [PubMed]

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008).
[CrossRef] [PubMed]

Proc. SPIE (2)

A. Fuerbach, G. A. Fernandez, A. Apolonski, E. Seres, T. Fuji, and F. Krausz, “Generation of sub-30-fs pulses from a scaleable high-energy oscillator,” Proc. SPIE 5340, 4–11 (2004).
[CrossRef]

E. Seres and Ch. Spielmann, “Development of an intracavity EUV Source based on a high power Ti:sapphire oscillator,” Proc. SPIE 7721, 77210I, 77210I-7 (2010).
[CrossRef]

Other (1)

http://henke.lbl.gov/optical_constants/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the intracavity HHG source.

Fig. 2
Fig. 2

(a) The measured spectrum with a FWHM of 80 nm is a clear indication of net-negative dispersion in the resonator. (b) The autocorrelation curve reveals pulse duration of 17 fs (FWHM) which is close to transform limited pulse duration of 14 fs.

Fig. 3
Fig. 3

(a) Measured and theoretically calculated width of the split vs. pump power for stable hard aperture mode locking. (b) The measured intra cavity power vs. pump power shows no indication of saturation.

Fig. 4
Fig. 4

(a) Transmission of the 25 mbar Xenon gas in the 1-mm-long jet and of the 100-nm-thick Silicon foil together with the reflection of the Nitrocellulose EUV output coupler. (b) Probability for generating a current pulse corresponding to certain photon energies. The count rate is shown for the oscillator operated in cw mode (red dotted line) and when it was mode-locked (blue line). In the cw mode we expect no EUV photons, so the signal represents the background. (c) Signal after subtracting the background and the estimated out-coupled conversion efficiency.

Metrics