Abstract

We investigate directional couplers (DCs) formed by channel plasmon-polariton (CPP) waveguides (CPPWs). DCs comprising 5-µm-offset S-bends and 40-µm-long parallel CPPWs with different separations (0.08, 0.25, 0.5 and 2 µm) between V-groove channels are fabricated by using a focused ion-beam (FIB) technique in a 2-μm-thick gold film and characterized at telecom wavelengths (1425-1630 nm) with near-field optical microscopy. Experimental results reveal strong coupling, resulting in approximately equal power splitting between DC-CPPWs, for small CPPW separations (0.08 and 0.25 µm). The coupling gradually deteriorates with the increase of separation between V-grooves and practically vanishes for the separation of 2 µm. The DC-CPPW characteristics observed are found in good agreement with finite-element method (implemented in COMSOL) simulations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Agranovich and D. L. Mills, eds., Surface Polaritons (North-Holland, 1982).
  2. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  3. N. E. Glass, A. A. Maradudin, and V. Celli, “Theory of surface-polariton resonances and field enhancements in light scattering from bigratings,” J. Opt. Soc. Am.73(10), 1240–1248 (1983).
    [CrossRef]
  4. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70(1), 1–87 (2007).
    [CrossRef]
  5. S. I. Bozhevolnyi and F. Pudonin, “Two-dimensional micro-optics of surface plasmons,” Phys. Rev. Lett.78(14), 2823–2826 (1997).
    [CrossRef]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  7. J. K. Lim, K. Imura, T. Nagahara, S. K. Kim, and H. Okamoto, “Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy,” Chem. Phys. Lett.412(1-3), 41–45 (2005).
    [CrossRef]
  8. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008).
    [CrossRef]
  9. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
    [CrossRef]
  10. J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs,” Opt. Express15(8), 4474–4484 (2007).
    [CrossRef] [PubMed]
  11. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
    [CrossRef] [PubMed]
  12. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62(24), 16356–16359 (2000).
    [CrossRef]
  13. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B65(19), 193408 (2002).
    [CrossRef]
  14. J. R. Krenn and J. C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. A Math. Phys. Eng. Sci.362(1817), 739–756 (2004).
    [CrossRef] [PubMed]
  15. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23(1), 413–422 (2005).
    [CrossRef]
  16. J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Opt. Express18(5), 5314–5319 (2010).
    [CrossRef] [PubMed]
  17. K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express13(1), 256–266 (2005).
    [CrossRef] [PubMed]
  18. I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B66(3), 035403 (2002).
    [CrossRef]
  19. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
    [CrossRef] [PubMed]
  20. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett.89(14), 143108 (2006).
    [CrossRef]
  21. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
    [CrossRef] [PubMed]
  22. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  23. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett.7(4), 880–884 (2007).
    [CrossRef] [PubMed]
  24. V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Dispersion of strongly confined channel plasmon polariton modes,” J. Opt. Soc. Am. B28(7), 1596–1602 (2011).
    [CrossRef]
  25. D. Arbel and M. Orenstein, “Plasmonic modes in W-shaped metal-coated silicon grooves,” Opt. Express16(5), 3114–3119 (2008).
    [CrossRef] [PubMed]
  26. Y. Li and X. Zhang, “Directional couplers using V-groove plasma waveguides,” in IEEE Symposium on Photonics and Optoelectronics (Institute of Electrical and Electronics Engineers, New York, 2009), 1–3.
  27. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
    [CrossRef]
  28. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Compact gradual bends for channel plasmon polaritons,” Opt. Express14(10), 4494–4503 (2006).
    [CrossRef] [PubMed]
  29. E. Palik and G. Ghosh, Handbook of Optical Constants of Solids II (Academic Press, 1991).
  30. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett.31(23), 3447–3449 (2006).
    [CrossRef] [PubMed]
  31. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express16(4), 2676–2684 (2008).
    [CrossRef] [PubMed]

2011

2010

2009

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

2008

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express16(4), 2676–2684 (2008).
[CrossRef] [PubMed]

D. Arbel and M. Orenstein, “Plasmonic modes in W-shaped metal-coated silicon grooves,” Opt. Express16(5), 3114–3119 (2008).
[CrossRef] [PubMed]

2007

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett.7(4), 880–884 (2007).
[CrossRef] [PubMed]

J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs,” Opt. Express15(8), 4474–4484 (2007).
[CrossRef] [PubMed]

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70(1), 1–87 (2007).
[CrossRef]

2006

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett.89(14), 143108 (2006).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Compact gradual bends for channel plasmon polaritons,” Opt. Express14(10), 4494–4503 (2006).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett.31(23), 3447–3449 (2006).
[CrossRef] [PubMed]

2005

K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express13(1), 256–266 (2005).
[CrossRef] [PubMed]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23(1), 413–422 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

J. K. Lim, K. Imura, T. Nagahara, S. K. Kim, and H. Okamoto, “Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy,” Chem. Phys. Lett.412(1-3), 41–45 (2005).
[CrossRef]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

2004

J. R. Krenn and J. C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. A Math. Phys. Eng. Sci.362(1817), 739–756 (2004).
[CrossRef] [PubMed]

2002

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B66(3), 035403 (2002).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B65(19), 193408 (2002).
[CrossRef]

2000

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62(24), 16356–16359 (2000).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

1997

S. I. Bozhevolnyi and F. Pudonin, “Two-dimensional micro-optics of surface plasmons,” Phys. Rev. Lett.78(14), 2823–2826 (1997).
[CrossRef]

1983

Arbel, D.

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B65(19), 193408 (2002).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62(24), 16356–16359 (2000).
[CrossRef]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Bartal, G.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
[CrossRef]

Boltasseva, A.

Bozhevolnyi, S. I.

V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Dispersion of strongly confined channel plasmon polariton modes,” J. Opt. Soc. Am. B28(7), 1596–1602 (2011).
[CrossRef]

J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Opt. Express18(5), 5314–5319 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express16(4), 2676–2684 (2008).
[CrossRef] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett.7(4), 880–884 (2007).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Compact gradual bends for channel plasmon polaritons,” Opt. Express14(10), 4494–4503 (2006).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett.31(23), 3447–3449 (2006).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett.89(14), 143108 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23(1), 413–422 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

S. I. Bozhevolnyi and F. Pudonin, “Two-dimensional micro-optics of surface plasmons,” Phys. Rev. Lett.78(14), 2823–2826 (1997).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B65(19), 193408 (2002).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62(24), 16356–16359 (2000).
[CrossRef]

Celli, V.

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70(1), 1–87 (2007).
[CrossRef]

Conway, J. A.

Dereux, A.

Devaux, E.

V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Dispersion of strongly confined channel plasmon polariton modes,” J. Opt. Soc. Am. B28(7), 1596–1602 (2011).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett.7(4), 880–884 (2007).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Compact gradual bends for channel plasmon polaritons,” Opt. Express14(10), 4494–4503 (2006).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett.89(14), 143108 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Dispersion of strongly confined channel plasmon polariton modes,” J. Opt. Soc. Am. B28(7), 1596–1602 (2011).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett.7(4), 880–884 (2007).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Compact gradual bends for channel plasmon polaritons,” Opt. Express14(10), 4494–4503 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett.89(14), 143108 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70(1), 1–87 (2007).
[CrossRef]

Garcia-Vidal, F. J.

García-Vidal, F. J.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Glass, N. E.

Gosciniak, J.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Han, Z.

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62(24), 16356–16359 (2000).
[CrossRef]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Imura, K.

J. K. Lim, K. Imura, T. Nagahara, S. K. Kim, and H. Okamoto, “Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy,” Chem. Phys. Lett.412(1-3), 41–45 (2005).
[CrossRef]

Jung, J.

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B65(19), 193408 (2002).
[CrossRef]

Kim, S. K.

J. K. Lim, K. Imura, T. Nagahara, S. K. Kim, and H. Okamoto, “Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy,” Chem. Phys. Lett.412(1-3), 41–45 (2005).
[CrossRef]

Kjaer, K.

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

J. R. Krenn and J. C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. A Math. Phys. Eng. Sci.362(1817), 739–756 (2004).
[CrossRef] [PubMed]

Laluet, J.-Y.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett.7(4), 880–884 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Larsen, M. S.

Leosson, K.

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Lim, J. K.

J. K. Lim, K. Imura, T. Nagahara, S. K. Kim, and H. Okamoto, “Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy,” Chem. Phys. Lett.412(1-3), 41–45 (2005).
[CrossRef]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B65(19), 193408 (2002).
[CrossRef]

Maradudin, A. A.

Markey, L.

Martin-Moreno, L.

Martín-Moreno, L.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Massenot, S.

Moreno, E.

Nagahara, T.

J. K. Lim, K. Imura, T. Nagahara, S. K. Kim, and H. Okamoto, “Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy,” Chem. Phys. Lett.412(1-3), 41–45 (2005).
[CrossRef]

Nikolajsen, T.

Novikov, I. V.

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B66(3), 035403 (2002).
[CrossRef]

Okamoto, H.

J. K. Lim, K. Imura, T. Nagahara, S. K. Kim, and H. Okamoto, “Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy,” Chem. Phys. Lett.412(1-3), 41–45 (2005).
[CrossRef]

Orenstein, M.

Oulton, R. F.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
[CrossRef]

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70(1), 1–87 (2007).
[CrossRef]

Pudonin, F.

S. I. Bozhevolnyi and F. Pudonin, “Two-dimensional micro-optics of surface plasmons,” Phys. Rev. Lett.78(14), 2823–2826 (1997).
[CrossRef]

Rodrigo, S. G.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett.31(23), 3447–3449 (2006).
[CrossRef] [PubMed]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Sahni, S.

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70(1), 1–87 (2007).
[CrossRef]

Sugiyama, T.

Szkopek, T.

Tanaka, K.

Tanaka, M.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Volkov, V. S.

V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Dispersion of strongly confined channel plasmon polariton modes,” J. Opt. Soc. Am. B28(7), 1596–1602 (2011).
[CrossRef]

J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Opt. Express18(5), 5314–5319 (2010).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett.7(4), 880–884 (2007).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Compact gradual bends for channel plasmon polaritons,” Opt. Express14(10), 4494–4503 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett.89(14), 143108 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Weeber, J. C.

J. R. Krenn and J. C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. A Math. Phys. Eng. Sci.362(1817), 739–756 (2004).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Zenin, V. A.

Zhang, X.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
[CrossRef]

Appl. Phys. Lett.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett.89(14), 143108 (2006).
[CrossRef]

Chem. Phys. Lett.

J. K. Lim, K. Imura, T. Nagahara, S. K. Kim, and H. Okamoto, “Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy,” Chem. Phys. Lett.412(1-3), 41–45 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Nano Lett.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett.7(4), 880–884 (2007).
[CrossRef] [PubMed]

Nat. Photonics

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Nature

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

New J. Phys.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Philos. Trans. A Math. Phys. Eng. Sci.

J. R. Krenn and J. C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. A Math. Phys. Eng. Sci.362(1817), 739–756 (2004).
[CrossRef] [PubMed]

Phys. Rev. B

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B66(3), 035403 (2002).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62(24), 16356–16359 (2000).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B65(19), 193408 (2002).
[CrossRef]

Phys. Rev. Lett.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

S. I. Bozhevolnyi and F. Pudonin, “Two-dimensional micro-optics of surface plasmons,” Phys. Rev. Lett.78(14), 2823–2826 (1997).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Phys. Today

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

Rep. Prog. Phys.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70(1), 1–87 (2007).
[CrossRef]

Other

V. M. Agranovich and D. L. Mills, eds., Surface Polaritons (North-Holland, 1982).

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

Y. Li and X. Zhang, “Directional couplers using V-groove plasma waveguides,” in IEEE Symposium on Photonics and Optoelectronics (Institute of Electrical and Electronics Engineers, New York, 2009), 1–3.

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids II (Academic Press, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Microscope image of the sample containing several DCs. (b) SEM image showing the DC with two channels separated by distance d in the coupling region and by approx. 10 μm at the output after two S-bends. (c) SEM image of the cross-section of V-groove reveals groove parameters: angle θ ~25° and depth H ~1.4 μm. (d) Experimental setup: (1) incoming TE-polarized radiation from tunable laser (free-space wavelength 1425-1630 nm); (2) polarization-maintained fiber with a tapered-lensed end used to couple light to CPP mode; (3) sample; (4) SNOM probe with its positioning system; (5) femtowatt InGaAs photoreceiver; (6) mirror; (7) IR camera; (8) 20Χ objective; (9,10) 2-dimentional X, Y stages; (11) 3-dimentional X, Y, Z stage. (e) In-coupling arrangement with the tapered-lensed fiber in front of the DC input. (f) Microscope image of the uncoated sharpened fiber tip used as a near-field optical probe.

Fig. 2
Fig. 2

Experimental results. SNOM (a) topographical and corresponding (b-d) optical images of coupling region for the DC with separation distance d = 0.25 μm, taken at different wavelengths: (b) λ = 1500 nm, (c) λ = 1600 nm, and (d) λ = 1630 nm. SNOM (e) topographical and corresponding (f-h) optical images of output region for the same DC, taken at (f) λ = 1425 nm, (g) λ = 1500 nm, and (h) λ = 1630 nm. (i) Cross-sections of the near-field optical (black hollow circles) and corresponding topographical (blue filled circles) images of (g), averaged along 10 lines perpendicular to the propagation direction.

Fig. 3
Fig. 3

SNOM (a-d) topographical and corresponding (e-h) optical images of coupling region for the DCs with different separation distances: (a), (e) d = 0.08 μm, (b), (f) d = 0.25 μm, (c), (g) d = 0.50 μm, (d), (h) d = 2.0 μm; taken at the wavelength λ ≈1500 nm. SNOM (i) topographical and corresponding (j) optical images of output region for the DC with separation distance d = 2.0 μm at the same wavelength λ ≈1500 nm. (k) Cross-sections of the near-field optical (black hollow circles) and correspondent topographical (blue filled circles) images of (i), (j), averaged along 5 lines perpendicular to the DC.

Fig. 4
Fig. 4

(a) Coupling configuration used for simulations. Modal structure of (b) even and (c) odd modes represented as the distribution of the dominant electric field component Ex, calculated by the use of the finite-element method (FEM) implemented in the commercial software COMSOL. All panels have a lateral size of 2.5 µm.

Fig. 5
Fig. 5

(a) Effective mode index, calculated for odd (solid black line) and even (solid red line) modes, and compared to the one of CPP (dotted blue line) and SPP (dashed green line) modes, at the wavelength λ = 1500 nm. (b) Propagation length of odd (solid black line) and even (solid red line) modes, compared to the one of CPP (dotted blue line) and SPP (dashed green line) modes, along with the coupling length (solid pink line), at λ = 1500 nm.

Fig. 6
Fig. 6

(a) SNOM optical image of coupling region for the DC with separation distance d = 0.25 μm, taken at the wavelength λ = 1500 nm. (b) Experimental values of the optical signal, varied along the propagation direction, corresponding to optical image (a), calculated inside the main (red hollow circles) and adjacent (blue filled circles) grooves relative to the background, and compared with the results of numerical simulations (red and blue lines for the intensities in the main and adjacent grooves, correspondingly). Error bars are estimated from the maximum variations of the CPP intensity, where we took into account the influence of the background level and the penetration depth of SNOM probe into the groove. (c) Crosstalk Iadjacent/Imain, calculated numerically for separation d varied from 40 to 3000 nm, at different wavelengths: 1425 nm (red lines), 1500 nm (blue lines), and 1630 nm (black lines), and at different longitudinal coordinates: z = 40 µm (solid lines) and z = LCPP (dashed lines).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E main (x,y,z)= E even (x,y)exp(i n even k 0 z)+ E odd (x,y)exp(i n odd k 0 z),
E adjacent (x,y,z)= E even (x,y)exp(i n even k 0 z)+ E odd (x,y)exp(i n odd k 0 z),
XT(z)= I adjacent (z) / I main (z) = | tan(Δn k 0 z) | 2 ,
L coupling = λ 2( N odd N even ) .
XT(z)= | tan({ Re[Δn]+iIm[Δn] } k 0 z) | 2 = | tan(Re[Δn] k 0 z)+itanh(Im[Δn] k 0 z) 1+itan(Re[Δn] k 0 z)tanh(Im[Δn] k 0 z) | 2 .
XT max =XT( L coupling )= { tanh(Im[Δn] k 0 L coupling ) } 2 .
Im[Δn] k 0 = n even n odd 2 = 1 2 ( 1 2 L even 1 2 L odd )= L odd L even 4 L even L odd ΔL 4 L CPP 2 ,
XT max =XT( L coupling )= { tanh( 1 4 ΔL L CPP L coupling L CPP ) } 2 .

Metrics