Abstract

We report experimental and finite-difference time-domain simulation studies on terahertz (THz) characteristics of band gaps by using metal grooves which are located inside the flare parallel-plate waveguide. The vertically localized standing-wave cavity mode (SWCM) between the upper waveguide surface and groove bottom, and the horizontally localized SWCM between two groove side walls (groove cavity) are observed. The E field intensity of the horizontally localized SWCM in grooves is very strongly enchanced which is three order higher than that of the input THz. The 4 band gaps except the Bragg band gap are caused by the π radian delay (out of phase) between the reflected THz field by grooves and the propagated THz field through the air gap. The measurement and simulation results agree well.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sommerfeld, “Ueber die fortpflanzung elektrodynamischer wellen längs eines drahtes,” Ann. Phys. Chem. 303(2), 233–290 (1899).
    [CrossRef]
  2. J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Annalen der Physik 328(10), 846–866 (1907).
    [CrossRef]
  3. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
    [CrossRef]
  4. D. F. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
    [CrossRef]
  5. F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure,” IEEE Trans. Microw. Theory Tech. 47(11), 2092–2098 (1999).
    [CrossRef]
  6. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
    [CrossRef]
  7. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  8. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006).
    [CrossRef]
  9. M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17(19), 17088–17101 (2009).
    [CrossRef] [PubMed]
  10. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  11. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
    [CrossRef] [PubMed]
  12. K. Ogusu and K. Takayama, “Transmission characteristics of photonic crystal waveguides with stubs and their application to optical filters,” Opt. Lett. 32(15), 2185–2187 (2007).
    [CrossRef] [PubMed]
  13. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
    [CrossRef] [PubMed]
  14. J. Tao, X. G. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17(16), 13989–13994 (2009).
    [CrossRef] [PubMed]
  15. M. Kuttge, F. J. García de Abajo, and A. Polman, “How grooves reflect and confine surfaceplasmon polaritons,” Opt. Express 17(12), 10385–10392 (2009).
    [CrossRef] [PubMed]
  16. J. Tao, X. Huang, X. Lin, J. Chen, Q. Zhang, and X. Jin, “Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters,” J. Opt. Soc. Am. B 27(2), 323–327 (2010).
    [CrossRef]
  17. Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
    [CrossRef] [PubMed]
  18. A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett. 87(5), 051101 (2005).
    [CrossRef]
  19. A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett. 90(9), 091105 (2007).
    [CrossRef]
  20. S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
    [CrossRef]
  21. E. S. Lee, D. H. Kang, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, D. S. Kim, and T.-I. Jeon, “Bragg reflection of terahertz waves in plasmonic crystals,” Opt. Express 17(11), 9212–9218 (2009).
    [CrossRef] [PubMed]
  22. E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett. 97(18), 181112 (2010).
    [CrossRef]
  23. V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett. 36(8), 1452–1454 (2011).
    [CrossRef] [PubMed]
  24. J. Renger, “Excitation, interaction, and scattering of localized and propagating surface polaritons,” Ph.D. Thesis., Technical University, Dresden, 63–84 (2006).
  25. Z. P. Jian, J. Pearce, and D. M. Mittleman, “Two-dimensional photonic crystal slabs in parallel-plate metal waveguides studied with terahertz time-domain spectroscopy,” Semicond. Sci. Technol. 20(7), S300–S306 (2005).
    [CrossRef]
  26. C. Yee and M. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
    [CrossRef]
  27. R. Mendis and D. Grischkowsky, ““THz interconnect with low loss and low group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
    [CrossRef]
  28. Y. Zhao and D. Grischkowsky, “Terahertz demonstrations of effectively two-dimensional photonic bandgap structures,” Opt. Lett. 31(10), 1534–1536 (2006).
    [CrossRef] [PubMed]
  29. E. S. Lee, S.-G. Lee, C.-S. Kee, and T.-I. Jeon, “Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides,” Opt. Express 19(16), 14852–14859 (2011).
    [CrossRef] [PubMed]
  30. S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express 18(2), 1289–1295 (2010).
    [CrossRef] [PubMed]
  31. S.-G. Lee, C.-S. Kee, E. S. Lee, and T.-I. Jeon, “Photonic band anti-crossing in a coupled system of a terahertz plasmonic crystal film and a metal air-gap waveguide,” J. Appl. Phys. 110(3), 033102 (2011).
    [CrossRef]

2011 (4)

2010 (3)

2009 (6)

2008 (1)

2007 (2)

2006 (2)

Y. Zhao and D. Grischkowsky, “Terahertz demonstrations of effectively two-dimensional photonic bandgap structures,” Opt. Lett. 31(10), 1534–1536 (2006).
[CrossRef] [PubMed]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006).
[CrossRef]

2005 (4)

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Z. P. Jian, J. Pearce, and D. M. Mittleman, “Two-dimensional photonic crystal slabs in parallel-plate metal waveguides studied with terahertz time-domain spectroscopy,” Semicond. Sci. Technol. 20(7), S300–S306 (2005).
[CrossRef]

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett. 87(5), 051101 (2005).
[CrossRef]

2004 (2)

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

2001 (1)

R. Mendis and D. Grischkowsky, ““THz interconnect with low loss and low group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
[CrossRef]

1999 (2)

D. F. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure,” IEEE Trans. Microw. Theory Tech. 47(11), 2092–2098 (1999).
[CrossRef]

1968 (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[CrossRef]

1907 (1)

J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Annalen der Physik 328(10), 846–866 (1907).
[CrossRef]

1899 (1)

A. Sommerfeld, “Ueber die fortpflanzung elektrodynamischer wellen längs eines drahtes,” Ann. Phys. Chem. 303(2), 233–290 (1899).
[CrossRef]

Alexopolous, N. G.

D. F. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Astley, V.

Bingham, A. L.

A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett. 90(9), 091105 (2007).
[CrossRef]

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett. 87(5), 051101 (2005).
[CrossRef]

Bozhevolnyi, S. I.

Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Broas, R.

D. F. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Chen, J.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Fernandez-Dominguez, A. I.

García de Abajo, F. J.

Garcia-Vidal, F. J.

García-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Gong, M.

Grischkowsky, D.

M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17(19), 17088–17101 (2009).
[CrossRef] [PubMed]

S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[CrossRef]

A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett. 90(9), 091105 (2007).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006).
[CrossRef]

Y. Zhao and D. Grischkowsky, “Terahertz demonstrations of effectively two-dimensional photonic bandgap structures,” Opt. Lett. 31(10), 1534–1536 (2006).
[CrossRef] [PubMed]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett. 87(5), 051101 (2005).
[CrossRef]

R. Mendis and D. Grischkowsky, ““THz interconnect with low loss and low group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
[CrossRef]

Han, Z.

Harsha, S. S.

S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[CrossRef]

Huang, X.

Huang, X. G.

Itoh, T.

F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure,” IEEE Trans. Microw. Theory Tech. 47(11), 2092–2098 (1999).
[CrossRef]

Jeon, T.-I.

E. S. Lee, S.-G. Lee, C.-S. Kee, and T.-I. Jeon, “Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides,” Opt. Express 19(16), 14852–14859 (2011).
[CrossRef] [PubMed]

S.-G. Lee, C.-S. Kee, E. S. Lee, and T.-I. Jeon, “Photonic band anti-crossing in a coupled system of a terahertz plasmonic crystal film and a metal air-gap waveguide,” J. Appl. Phys. 110(3), 033102 (2011).
[CrossRef]

S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express 18(2), 1289–1295 (2010).
[CrossRef] [PubMed]

E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett. 97(18), 181112 (2010).
[CrossRef]

M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17(19), 17088–17101 (2009).
[CrossRef] [PubMed]

E. S. Lee, D. H. Kang, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, D. S. Kim, and T.-I. Jeon, “Bragg reflection of terahertz waves in plasmonic crystals,” Opt. Express 17(11), 9212–9218 (2009).
[CrossRef] [PubMed]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006).
[CrossRef]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

Ji, Y. B.

E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett. 97(18), 181112 (2010).
[CrossRef]

S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express 18(2), 1289–1295 (2010).
[CrossRef] [PubMed]

Jian, Z. P.

Z. P. Jian, J. Pearce, and D. M. Mittleman, “Two-dimensional photonic crystal slabs in parallel-plate metal waveguides studied with terahertz time-domain spectroscopy,” Semicond. Sci. Technol. 20(7), S300–S306 (2005).
[CrossRef]

Jin, X.

Kang, D. H.

Kee, C.-S.

E. S. Lee, S.-G. Lee, C.-S. Kee, and T.-I. Jeon, “Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides,” Opt. Express 19(16), 14852–14859 (2011).
[CrossRef] [PubMed]

S.-G. Lee, C.-S. Kee, E. S. Lee, and T.-I. Jeon, “Photonic band anti-crossing in a coupled system of a terahertz plasmonic crystal film and a metal air-gap waveguide,” J. Appl. Phys. 110(3), 033102 (2011).
[CrossRef]

Kim, D. S.

Kim, S.-H.

Kuttge, M.

Laman, N.

S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[CrossRef]

Lee, E. S.

Lee, S.-G.

S.-G. Lee, C.-S. Kee, E. S. Lee, and T.-I. Jeon, “Photonic band anti-crossing in a coupled system of a terahertz plasmonic crystal film and a metal air-gap waveguide,” J. Appl. Phys. 110(3), 033102 (2011).
[CrossRef]

E. S. Lee, S.-G. Lee, C.-S. Kee, and T.-I. Jeon, “Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides,” Opt. Express 19(16), 14852–14859 (2011).
[CrossRef] [PubMed]

Lin, X.

Lin, X. S.

Ma, K.-P.

F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure,” IEEE Trans. Microw. Theory Tech. 47(11), 2092–2098 (1999).
[CrossRef]

Martin-Moreno, L.

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

McCracken, B.

Mendis, R.

V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett. 36(8), 1452–1454 (2011).
[CrossRef] [PubMed]

R. Mendis and D. Grischkowsky, ““THz interconnect with low loss and low group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
[CrossRef]

Mittleman, D. M.

V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett. 36(8), 1452–1454 (2011).
[CrossRef] [PubMed]

Z. P. Jian, J. Pearce, and D. M. Mittleman, “Two-dimensional photonic crystal slabs in parallel-plate metal waveguides studied with terahertz time-domain spectroscopy,” Semicond. Sci. Technol. 20(7), S300–S306 (2005).
[CrossRef]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Ogusu, K.

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[CrossRef]

Pearce, J.

Z. P. Jian, J. Pearce, and D. M. Mittleman, “Two-dimensional photonic crystal slabs in parallel-plate metal waveguides studied with terahertz time-domain spectroscopy,” Semicond. Sci. Technol. 20(7), S300–S306 (2005).
[CrossRef]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Polman, A.

Qian, Y.

F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure,” IEEE Trans. Microw. Theory Tech. 47(11), 2092–2098 (1999).
[CrossRef]

Sherwin, M.

C. Yee and M. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[CrossRef]

Sievenpiper, D. F.

D. F. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Sommerfeld, A.

A. Sommerfeld, “Ueber die fortpflanzung elektrodynamischer wellen längs eines drahtes,” Ann. Phys. Chem. 303(2), 233–290 (1899).
[CrossRef]

Takayama, K.

Tao, J.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Yablonovitch, E.

D. F. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Yang, F.-R.

F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure,” IEEE Trans. Microw. Theory Tech. 47(11), 2092–2098 (1999).
[CrossRef]

Yee, C.

C. Yee and M. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[CrossRef]

Zenneck, J.

J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Annalen der Physik 328(10), 846–866 (1907).
[CrossRef]

Zhang, J.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

Zhang, L.

D. F. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Zhang, Q.

Zhao, Y.

Y. Zhao and D. Grischkowsky, “Terahertz demonstrations of effectively two-dimensional photonic bandgap structures,” Opt. Lett. 31(10), 1534–1536 (2006).
[CrossRef] [PubMed]

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett. 87(5), 051101 (2005).
[CrossRef]

Ann. Phys. Chem. (1)

A. Sommerfeld, “Ueber die fortpflanzung elektrodynamischer wellen längs eines drahtes,” Ann. Phys. Chem. 303(2), 233–290 (1899).
[CrossRef]

Annalen der Physik (1)

J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Annalen der Physik 328(10), 846–866 (1907).
[CrossRef]

Appl. Phys. Lett. (7)

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006).
[CrossRef]

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett. 87(5), 051101 (2005).
[CrossRef]

A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett. 90(9), 091105 (2007).
[CrossRef]

S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[CrossRef]

E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett. 97(18), 181112 (2010).
[CrossRef]

C. Yee and M. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

R. Mendis and D. Grischkowsky, ““THz interconnect with low loss and low group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

D. F. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure,” IEEE Trans. Microw. Theory Tech. 47(11), 2092–2098 (1999).
[CrossRef]

J. Appl. Phys. (1)

S.-G. Lee, C.-S. Kee, E. S. Lee, and T.-I. Jeon, “Photonic band anti-crossing in a coupled system of a terahertz plasmonic crystal film and a metal air-gap waveguide,” J. Appl. Phys. 110(3), 033102 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

Z. P. Jian, J. Pearce, and D. M. Mittleman, “Two-dimensional photonic crystal slabs in parallel-plate metal waveguides studied with terahertz time-domain spectroscopy,” Semicond. Sci. Technol. 20(7), S300–S306 (2005).
[CrossRef]

Z. Phys. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[CrossRef]

Other (1)

J. Renger, “Excitation, interaction, and scattering of localized and propagating surface polaritons,” Ph.D. Thesis., Technical University, Dresden, 63–84 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: (a) Optical micrograph of grooves. (b) Geometry of grooves. The period (p) is 142 μm, the groove width (w) is 58 μm, the groove depth (d) is 84 μm, and the number of grooves (N) is 15.

Fig. 2
Fig. 2

(a) Measured reference pulse for 75 μm air gap. (b) Transmitted output pulse for 75 μm air gap. (c)-(f) Measured THz spectra with various air gaps. The black and red lines indicate reference and output spectra. (g)-(j) Comparison of measured power transmission spectra (red) and FDTD simulated power transmission (Black) for spectra (c)-(f), respectively. The Roman numerals I, II, III, and IV and letters A, B, and C are used to distinguish the source of band gaps from multiple grooves and single groove, respectively.

Fig. 3
Fig. 3

(a) 2-dimension FDTD simulations for 15 grooves. The air gaps used in the measurement are indicated by horizontal white lines. The vertical and inclined dotted lines indicate band gap I-2 and band gap B respectively. (b) 2-dimension FDTD simulations for single groove.

Fig. 4
Fig. 4

E field intensity ((a)~(f)) and Hz field ((g), (h)) distribution in grooves. (a) Band gap A at 75-μm air gap with 0.7 THz single frequency. The diagram shows the out of phase state between the detour (red arrow) and straight (blue arrow) propagated THz fields. (b) Band gap B at 51-μm air gap with 2.37 THz single frequency. The diagram shows vertically localized standing-wave. (c) Band gap C at 51-μm air gap with 2.625 THz single frequency. The diagram shows horizontally localized standing-wave. (d)~(f) are identical with (a)~(c) but for single groove. (g) Band gap II-1 at 134-μm air gap with 1.4 THz single frequency. (h) Band gap II-2 at 134-μm air gap with 2.8 THz single frequency.

Metrics