Abstract

We provide the first demonstration of exceptional light-with-light optical switching performance of a carbon nanotube metamaterial – a hybrid nanostructure of a plasmonic metamaterial with semiconducting single-walled carbon nanotubes. A modulation depth of 10% in the near-IR with sub-500 fs response time is achieved with a pump fluence of just 10 μJ/cm2, which is an order of magnitude lower than in previously reported artificial nanostructures. The improved switching characteristics of the carbon nanotube metamaterial are defined by an excitonic nonlinearity of carbon nanotubes resonantly enhanced by a concentration of local fields in the metamaterial. Since the spectral position of the excitonic response and metamaterial plasmonic resonance can be adjusted by using carbon nanotubes of different diameter and scaling of the metamaterial design, the giant nonlinear response of the hybrid metamaterial – in principle – can be engineered to cover the entire second and third telecom windows, from O- to U-band.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. I. Zheludev, “Nonlinear optics on the nanoscale,” Contemp. Phys. 43(5), 365–377 (2002).
    [CrossRef]
  2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  3. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
    [CrossRef]
  4. N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
    [CrossRef] [PubMed]
  5. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
    [CrossRef] [PubMed]
  6. D. J. Cho, W. Wu, E. Ponizovskaya, P. Chaturvedi, A. M. Bratkovsky, S.-Y. Wang, X. Zhang, F. Wang, and Y. R. Shen, “Ultrafast modulation of optical metamaterials,” Opt. Express 17(20), 17652–17657 (2009).
    [CrossRef] [PubMed]
  7. K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, A. J. Taylor, and S. R. J. Brueck, “Ultrafast nonlinear optical spectroscopy of a dual-band negative index metamaterial all-optical switching device,” Opt. Express 19(5), 3973–3983 (2011).
    [CrossRef] [PubMed]
  8. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [CrossRef]
  9. M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. (Deerfield Beach Fla.) 23(46), 5540–5544 (2011).
    [CrossRef] [PubMed]
  10. A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
    [CrossRef] [PubMed]
  11. Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
    [CrossRef]
  12. S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. (Deerfield Beach Fla.) 15(6), 534–537 (2003).
    [CrossRef]
  13. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [CrossRef] [PubMed]
  14. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [CrossRef] [PubMed]
  15. L. Huang, H. N. Pedrosa, and T. D. Krauss, “Ultrafast ground-state recovery of single-walled carbon nanotubes,” Phys. Rev. Lett. 93(1), 017403 (2004).
    [CrossRef]
  16. G. N. Ostojic, S. Zaric, J. Kono, M. S. Strano, V. C. Moore, R. H. Hauge, and R. E. Smalley, “Interband recombination dynamics in resonantly excited single-walled carbon nanotubes,” Phys. Rev. Lett. 92(11), 117402 (2004).
    [CrossRef] [PubMed]
  17. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
    [CrossRef]
  18. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.) 21(38–39), 3874–3899 (2009).
    [CrossRef]
  19. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, Amsterdam, 2008).
  20. K. H. Fong, K. Kikuchi, C. S. Goh, S. Y. Set, R. Grange, M. Haiml, A. Schlatter, and U. Keller, “Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film,” Opt. Lett. 32(1), 38–40 (2007).
    [CrossRef] [PubMed]
  21. A. Chipouline, S. Sugavanam, V. A. Fedotov, A. E. Nikolaenko, and T. Pertsch, “Analytical model for nonlinear response of carbon nanotubes enhanced by a plasmonic metamaterial,” arXiv:1108.2646v2 (2011), http://arxiv.org/abs/1108.2646 .
  22. M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297(5581), 593–596 (2002).
    [CrossRef] [PubMed]
  23. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105(22), 227403 (2010).
    [CrossRef] [PubMed]
  24. F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes,” Phys. Rev. Lett. 92(17), 177401 (2004).
    [CrossRef] [PubMed]
  25. S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, and M. S. Strano, “Excited-state carrier lifetime in single-walled carbon nanotubes,” Phys. Rev. B 71(3), 033402 (2005).
    [CrossRef]
  26. P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
    [CrossRef]
  27. A. Maeda, S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, and H. Okamoto, “Large optical nonlinearity of semiconducting single-walled carbon nanotubes under resonant excitations,” Phys. Rev. Lett. 94(4), 047404 (2005).
    [CrossRef] [PubMed]
  28. M. C. Hersam, “Progress towards monodisperse single-walled carbon nanotubes,” Nat. Nanotechnol. 3(7), 387–394 (2008).
    [CrossRef] [PubMed]
  29. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met. 103(1-3), 2555–2558 (1999).
    [CrossRef]

2011

M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. (Deerfield Beach Fla.) 23(46), 5540–5544 (2011).
[CrossRef] [PubMed]

K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, A. J. Taylor, and S. R. J. Brueck, “Ultrafast nonlinear optical spectroscopy of a dual-band negative index metamaterial all-optical switching device,” Opt. Express 19(5), 3973–3983 (2011).
[CrossRef] [PubMed]

2010

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[CrossRef] [PubMed]

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[CrossRef]

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105(22), 227403 (2010).
[CrossRef] [PubMed]

2009

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.) 21(38–39), 3874–3899 (2009).
[CrossRef]

D. J. Cho, W. Wu, E. Ponizovskaya, P. Chaturvedi, A. M. Bratkovsky, S.-Y. Wang, X. Zhang, F. Wang, and Y. R. Shen, “Ultrafast modulation of optical metamaterials,” Opt. Express 17(20), 17652–17657 (2009).
[CrossRef] [PubMed]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

2008

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[CrossRef]

M. C. Hersam, “Progress towards monodisperse single-walled carbon nanotubes,” Nat. Nanotechnol. 3(7), 387–394 (2008).
[CrossRef] [PubMed]

2007

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

K. H. Fong, K. Kikuchi, C. S. Goh, S. Y. Set, R. Grange, M. Haiml, A. Schlatter, and U. Keller, “Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film,” Opt. Lett. 32(1), 38–40 (2007).
[CrossRef] [PubMed]

2006

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

2005

S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, and M. S. Strano, “Excited-state carrier lifetime in single-walled carbon nanotubes,” Phys. Rev. B 71(3), 033402 (2005).
[CrossRef]

A. Maeda, S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, and H. Okamoto, “Large optical nonlinearity of semiconducting single-walled carbon nanotubes under resonant excitations,” Phys. Rev. Lett. 94(4), 047404 (2005).
[CrossRef] [PubMed]

2004

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes,” Phys. Rev. Lett. 92(17), 177401 (2004).
[CrossRef] [PubMed]

L. Huang, H. N. Pedrosa, and T. D. Krauss, “Ultrafast ground-state recovery of single-walled carbon nanotubes,” Phys. Rev. Lett. 93(1), 017403 (2004).
[CrossRef]

G. N. Ostojic, S. Zaric, J. Kono, M. S. Strano, V. C. Moore, R. H. Hauge, and R. E. Smalley, “Interband recombination dynamics in resonantly excited single-walled carbon nanotubes,” Phys. Rev. Lett. 92(11), 117402 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

2003

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. (Deerfield Beach Fla.) 15(6), 534–537 (2003).
[CrossRef]

2002

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297(5581), 593–596 (2002).
[CrossRef] [PubMed]

N. I. Zheludev, “Nonlinear optics on the nanoscale,” Contemp. Phys. 43(5), 365–377 (2002).
[CrossRef]

1999

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met. 103(1-3), 2555–2558 (1999).
[CrossRef]

Achiba, Y.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met. 103(1-3), 2555–2558 (1999).
[CrossRef]

Ajayan, P. M.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Ashburn, P.

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
[CrossRef] [PubMed]

Ata, M.

A. Maeda, S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, and H. Okamoto, “Large optical nonlinearity of semiconducting single-walled carbon nanotubes under resonant excitations,” Phys. Rev. Lett. 94(4), 047404 (2005).
[CrossRef] [PubMed]

Averitt, R. D.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Avouris, P.

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[CrossRef]

Bachilo, S. M.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297(5581), 593–596 (2002).
[CrossRef] [PubMed]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Boden, S. A.

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
[CrossRef] [PubMed]

Bonaccorso, F.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.) 21(38–39), 3874–3899 (2009).
[CrossRef]

Boul, P. J.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297(5581), 593–596 (2002).
[CrossRef] [PubMed]

Bratkovsky, A. M.

Brueck, S. R. J.

Brus, L. E.

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes,” Phys. Rev. Lett. 92(17), 177401 (2004).
[CrossRef] [PubMed]

Chaturvedi, P.

Chen, Y.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Cho, D. J.

Cho, W. B.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[CrossRef]

Choi, S. Y.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[CrossRef]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Dani, K. M.

De Angelis, F.

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
[CrossRef] [PubMed]

Di Fabrizio, E.

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
[CrossRef] [PubMed]

Dukovic, G.

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes,” Phys. Rev. Lett. 92(17), 177401 (2004).
[CrossRef] [PubMed]

Dworzak, M.

S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, and M. S. Strano, “Excited-state carrier lifetime in single-walled carbon nanotubes,” Phys. Rev. B 71(3), 033402 (2005).
[CrossRef]

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Ferrari, A. C.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.) 21(38–39), 3874–3899 (2009).
[CrossRef]

Fong, K. H.

Freitag, M.

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[CrossRef]

Furuki, M.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. (Deerfield Beach Fla.) 15(6), 534–537 (2003).
[CrossRef]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Goh, C. S.

Grange, R.

Griebner, U.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[CrossRef]

Gu, M.

M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. (Deerfield Beach Fla.) 23(46), 5540–5544 (2011).
[CrossRef] [PubMed]

Haiml, M.

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Haroz, E. H.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297(5581), 593–596 (2002).
[CrossRef] [PubMed]

Hasan, T.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.) 21(38–39), 3874–3899 (2009).
[CrossRef]

Hauge, R. H.

G. N. Ostojic, S. Zaric, J. Kono, M. S. Strano, V. C. Moore, R. H. Hauge, and R. E. Smalley, “Interband recombination dynamics in resonantly excited single-walled carbon nanotubes,” Phys. Rev. Lett. 92(11), 117402 (2004).
[CrossRef] [PubMed]

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297(5581), 593–596 (2002).
[CrossRef] [PubMed]

Heinz, T. F.

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes,” Phys. Rev. Lett. 92(17), 177401 (2004).
[CrossRef] [PubMed]

Hersam, M. C.

M. C. Hersam, “Progress towards monodisperse single-walled carbon nanotubes,” Nat. Nanotechnol. 3(7), 387–394 (2008).
[CrossRef] [PubMed]

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Hoffmann, A.

S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, and M. S. Strano, “Excited-state carrier lifetime in single-walled carbon nanotubes,” Phys. Rev. B 71(3), 033402 (2005).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Huang, L.

L. Huang, H. N. Pedrosa, and T. D. Krauss, “Ultrafast ground-state recovery of single-walled carbon nanotubes,” Phys. Rev. Lett. 93(1), 017403 (2004).
[CrossRef]

Huffman, C. B.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297(5581), 593–596 (2002).
[CrossRef] [PubMed]

Iwasa, I.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. (Deerfield Beach Fla.) 15(6), 534–537 (2003).
[CrossRef]

Iwasa, Y.

A. Maeda, S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, and H. Okamoto, “Large optical nonlinearity of semiconducting single-walled carbon nanotubes under resonant excitations,” Phys. Rev. Lett. 94(4), 047404 (2005).
[CrossRef] [PubMed]

Jia, B.

M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. (Deerfield Beach Fla.) 23(46), 5540–5544 (2011).
[CrossRef] [PubMed]

Kataura, H.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met. 103(1-3), 2555–2558 (1999).
[CrossRef]

Keller, U.

Kikuchi, K.

Kim, K.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[CrossRef]

Kishida, H.

A. Maeda, S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, and H. Okamoto, “Large optical nonlinearity of semiconducting single-walled carbon nanotubes under resonant excitations,” Phys. Rev. Lett. 94(4), 047404 (2005).
[CrossRef] [PubMed]

Kittrell, C.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297(5581), 593–596 (2002).
[CrossRef] [PubMed]

Kono, J.

G. N. Ostojic, S. Zaric, J. Kono, M. S. Strano, V. C. Moore, R. H. Hauge, and R. E. Smalley, “Interband recombination dynamics in resonantly excited single-walled carbon nanotubes,” Phys. Rev. Lett. 92(11), 117402 (2004).
[CrossRef] [PubMed]

Krauss, T. D.

L. Huang, H. N. Pedrosa, and T. D. Krauss, “Ultrafast ground-state recovery of single-walled carbon nanotubes,” Phys. Rev. Lett. 93(1), 017403 (2004).
[CrossRef]

Ku, Z.

Kumazawa, Y.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met. 103(1-3), 2555–2558 (1999).
[CrossRef]

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Lee, S.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[CrossRef]

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Lu, T.-M.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Ma, J.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297(5581), 593–596 (2002).
[CrossRef] [PubMed]

MacDonald, K. F.

M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. (Deerfield Beach Fla.) 23(46), 5540–5544 (2011).
[CrossRef] [PubMed]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

Maeda, A.

A. Maeda, S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, and H. Okamoto, “Large optical nonlinearity of semiconducting single-walled carbon nanotubes under resonant excitations,” Phys. Rev. Lett. 94(4), 047404 (2005).
[CrossRef] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Maniwa, Y.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met. 103(1-3), 2555–2558 (1999).
[CrossRef]

Matsumoto, S.

A. Maeda, S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, and H. Okamoto, “Large optical nonlinearity of semiconducting single-walled carbon nanotubes under resonant excitations,” Phys. Rev. Lett. 94(4), 047404 (2005).
[CrossRef] [PubMed]

Mitsu, H.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. (Deerfield Beach Fla.) 15(6), 534–537 (2003).
[CrossRef]

Moore, V. C.

G. N. Ostojic, S. Zaric, J. Kono, M. S. Strano, V. C. Moore, R. H. Hauge, and R. E. Smalley, “Interband recombination dynamics in resonantly excited single-walled carbon nanotubes,” Phys. Rev. Lett. 92(11), 117402 (2004).
[CrossRef] [PubMed]

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297(5581), 593–596 (2002).
[CrossRef] [PubMed]

Nikolaenko, A. E.

M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. (Deerfield Beach Fla.) 23(46), 5540–5544 (2011).
[CrossRef] [PubMed]

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
[CrossRef] [PubMed]

Noon, W. H.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297(5581), 593–596 (2002).
[CrossRef] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

O’Connell, M. J.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297(5581), 593–596 (2002).
[CrossRef] [PubMed]

Ohtsuka, Y.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met. 103(1-3), 2555–2558 (1999).
[CrossRef]

Okamoto, H.

A. Maeda, S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, and H. Okamoto, “Large optical nonlinearity of semiconducting single-walled carbon nanotubes under resonant excitations,” Phys. Rev. Lett. 94(4), 047404 (2005).
[CrossRef] [PubMed]

Ostojic, G. N.

G. N. Ostojic, S. Zaric, J. Kono, M. S. Strano, V. C. Moore, R. H. Hauge, and R. E. Smalley, “Interband recombination dynamics in resonantly excited single-walled carbon nanotubes,” Phys. Rev. Lett. 92(11), 117402 (2004).
[CrossRef] [PubMed]

Ou, J. Y.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105(22), 227403 (2010).
[CrossRef] [PubMed]

Ou, J.-Y.

M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. (Deerfield Beach Fla.) 23(46), 5540–5544 (2011).
[CrossRef] [PubMed]

Padilla, W. J.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Papasimakis, N.

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Pedrosa, H. N.

L. Huang, H. N. Pedrosa, and T. D. Krauss, “Ultrafast ground-state recovery of single-walled carbon nanotubes,” Phys. Rev. Lett. 93(1), 017403 (2004).
[CrossRef]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Perebeinos, V.

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[CrossRef]

Petrov, V.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[CrossRef]

Plum, E.

M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. (Deerfield Beach Fla.) 23(46), 5540–5544 (2011).
[CrossRef] [PubMed]

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105(22), 227403 (2010).
[CrossRef] [PubMed]

Ponizovskaya, E.

Prasankumar, R. P.

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Raravikar, N. R.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Reich, S.

S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, and M. S. Strano, “Excited-state carrier lifetime in single-walled carbon nanotubes,” Phys. Rev. B 71(3), 033402 (2005).
[CrossRef]

Ren, M.

M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. (Deerfield Beach Fla.) 23(46), 5540–5544 (2011).
[CrossRef] [PubMed]

Rialon, K. L.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297(5581), 593–596 (2002).
[CrossRef] [PubMed]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Rotermund, F.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[CrossRef]

Rozhin, A. G.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.) 21(38–39), 3874–3899 (2009).
[CrossRef]

Samson, Z. L.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

Sato, Y.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. (Deerfield Beach Fla.) 15(6), 534–537 (2003).
[CrossRef]

Schadler, L. S.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Schlatter, A.

Schmidt, A.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[CrossRef]

Set, S. Y.

Shen, Y. R.

Shiraishi, M.

A. Maeda, S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, and H. Okamoto, “Large optical nonlinearity of semiconducting single-walled carbon nanotubes under resonant excitations,” Phys. Rev. Lett. 94(4), 047404 (2005).
[CrossRef] [PubMed]

Smalley, R. E.

G. N. Ostojic, S. Zaric, J. Kono, M. S. Strano, V. C. Moore, R. H. Hauge, and R. E. Smalley, “Interband recombination dynamics in resonantly excited single-walled carbon nanotubes,” Phys. Rev. Lett. 92(11), 117402 (2004).
[CrossRef] [PubMed]

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297(5581), 593–596 (2002).
[CrossRef] [PubMed]

Steinmeyer, G.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Stockman, M. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

Strano, M. S.

S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, and M. S. Strano, “Excited-state carrier lifetime in single-walled carbon nanotubes,” Phys. Rev. B 71(3), 033402 (2005).
[CrossRef]

G. N. Ostojic, S. Zaric, J. Kono, M. S. Strano, V. C. Moore, R. H. Hauge, and R. E. Smalley, “Interband recombination dynamics in resonantly excited single-walled carbon nanotubes,” Phys. Rev. Lett. 92(11), 117402 (2004).
[CrossRef] [PubMed]

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297(5581), 593–596 (2002).
[CrossRef] [PubMed]

Sun, Z.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.) 21(38–39), 3874–3899 (2009).
[CrossRef]

Suzuki, S.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met. 103(1-3), 2555–2558 (1999).
[CrossRef]

Takenobu, T.

A. Maeda, S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, and H. Okamoto, “Large optical nonlinearity of semiconducting single-walled carbon nanotubes under resonant excitations,” Phys. Rev. Lett. 94(4), 047404 (2005).
[CrossRef] [PubMed]

Tan, P. H.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.) 21(38–39), 3874–3899 (2009).
[CrossRef]

Tanaka, K.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105(22), 227403 (2010).
[CrossRef] [PubMed]

Tatsuura, S.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. (Deerfield Beach Fla.) 15(6), 534–537 (2003).
[CrossRef]

Taylor, A. J.

K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, A. J. Taylor, and S. R. J. Brueck, “Ultrafast nonlinear optical spectroscopy of a dual-band negative index metamaterial all-optical switching device,” Opt. Express 19(5), 3973–3983 (2011).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Thomsen, C.

S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, and M. S. Strano, “Excited-state carrier lifetime in single-walled carbon nanotubes,” Phys. Rev. B 71(3), 033402 (2005).
[CrossRef]

Tian, M.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. (Deerfield Beach Fla.) 15(6), 534–537 (2003).
[CrossRef]

Uchino, T.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105(22), 227403 (2010).
[CrossRef] [PubMed]

Umezu, I.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met. 103(1-3), 2555–2558 (1999).
[CrossRef]

Upadhya, P. C.

Wang, F.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.) 21(38–39), 3874–3899 (2009).
[CrossRef]

D. J. Cho, W. Wu, E. Ponizovskaya, P. Chaturvedi, A. M. Bratkovsky, S.-Y. Wang, X. Zhang, F. Wang, and Y. R. Shen, “Ultrafast modulation of optical metamaterials,” Opt. Express 17(20), 17652–17657 (2009).
[CrossRef] [PubMed]

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes,” Phys. Rev. Lett. 92(17), 177401 (2004).
[CrossRef] [PubMed]

Wang, G.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Wang, S.-Y.

Weisman, R. B.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297(5581), 593–596 (2002).
[CrossRef] [PubMed]

Wu, W.

Xu, J.

M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. (Deerfield Beach Fla.) 23(46), 5540–5544 (2011).
[CrossRef] [PubMed]

Yeom, D.-I.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[CrossRef]

Yim, J. H.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[CrossRef]

Zaric, S.

G. N. Ostojic, S. Zaric, J. Kono, M. S. Strano, V. C. Moore, R. H. Hauge, and R. E. Smalley, “Interband recombination dynamics in resonantly excited single-walled carbon nanotubes,” Phys. Rev. Lett. 92(11), 117402 (2004).
[CrossRef] [PubMed]

Zhang, J.

M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. (Deerfield Beach Fla.) 23(46), 5540–5544 (2011).
[CrossRef] [PubMed]

Zhang, X.

Zhang, X.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Zhao, Y.-P.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Zheludev, N. I.

M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. (Deerfield Beach Fla.) 23(46), 5540–5544 (2011).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[CrossRef] [PubMed]

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105(22), 227403 (2010).
[CrossRef] [PubMed]

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
[CrossRef] [PubMed]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

N. I. Zheludev, “Nonlinear optics on the nanoscale,” Contemp. Phys. 43(5), 365–377 (2002).
[CrossRef]

Adv. Funct. Mater.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the non linear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.) 21(38–39), 3874–3899 (2009).
[CrossRef]

M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. (Deerfield Beach Fla.) 23(46), 5540–5544 (2011).
[CrossRef] [PubMed]

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. (Deerfield Beach Fla.) 15(6), 534–537 (2003).
[CrossRef]

Appl. Phys. Lett.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Contemp. Phys.

N. I. Zheludev, “Nonlinear optics on the nanoscale,” Contemp. Phys. 43(5), 365–377 (2002).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Nat. Mater.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol.

M. C. Hersam, “Progress towards monodisperse single-walled carbon nanotubes,” Nat. Nanotechnol. 3(7), 387–394 (2008).
[CrossRef] [PubMed]

Nat. Photonics

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[CrossRef]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

Nature

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, and M. S. Strano, “Excited-state carrier lifetime in single-walled carbon nanotubes,” Phys. Rev. B 71(3), 033402 (2005).
[CrossRef]

Phys. Rev. Lett.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105(22), 227403 (2010).
[CrossRef] [PubMed]

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes,” Phys. Rev. Lett. 92(17), 177401 (2004).
[CrossRef] [PubMed]

L. Huang, H. N. Pedrosa, and T. D. Krauss, “Ultrafast ground-state recovery of single-walled carbon nanotubes,” Phys. Rev. Lett. 93(1), 017403 (2004).
[CrossRef]

G. N. Ostojic, S. Zaric, J. Kono, M. S. Strano, V. C. Moore, R. H. Hauge, and R. E. Smalley, “Interband recombination dynamics in resonantly excited single-walled carbon nanotubes,” Phys. Rev. Lett. 92(11), 117402 (2004).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

A. Maeda, S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, and H. Okamoto, “Large optical nonlinearity of semiconducting single-walled carbon nanotubes under resonant excitations,” Phys. Rev. Lett. 94(4), 047404 (2005).
[CrossRef] [PubMed]

Science

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[CrossRef] [PubMed]

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297(5581), 593–596 (2002).
[CrossRef] [PubMed]

Synth. Met.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met. 103(1-3), 2555–2558 (1999).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, Amsterdam, 2008).

A. Chipouline, S. Sugavanam, V. A. Fedotov, A. E. Nikolaenko, and T. Pertsch, “Analytical model for nonlinear response of carbon nanotubes enhanced by a plasmonic metamaterial,” arXiv:1108.2646v2 (2011), http://arxiv.org/abs/1108.2646 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Carbon nanotube metamaterial. (a) Scanning helium ion microscope image of the plasmonic metamaterial covered by CNTs. Inset shows image of two unit cells of uncovered metamaterial. (b) Left scale – plasmonic absorption resonances of uncovered metamaterial (black) and metamaterial covered by CNTs (blue). Right scale – excitonic absorption spectra of the bare CNT layer (wine). (c) Transmission spectra of uncovered metamaterial (black) and metamaterial covered by CNTs (blue). Presented spectra were measured on a CRAIC microspectrometer and correspond to the linear (low intensity) regime.

Fig. 2
Fig. 2

Spectrally resolved transient changes of transmission of the CNT metamaterial. Pump fluence is 10 μJ/cm2 (power density – 50 MW/cm2).

Fig. 3
Fig. 3

Differential transmission spectra of the CNT metamaterial (solid symbols) taken at 0 (black circles), 0.5 (red squares), 1 (blue diamonds) and 2 ps (green triangles) after the pump pulse. Differential transmission spectrum of the bare CNT layer measured at 0 ps is shown by open circles. Bars indicate spectral regions (FWHM) of metamaterial (covered by CNTs) plasmonic (λp*) and CNT excitonic (λ11) resonances.

Fig. 4
Fig. 4

The time evolution of pump-induced nonlinear changes of transmission measured on the CNT metamaterial (red) and the bare CNT layer (black) at (a) 1820 nm and (b) 1960 nm. Curves shifted vertically for clarity. Pump fluence is 10 μJ/cm2 for all of the presented curves. Dotted green curve on (b) represents autocorrelation trace, thick dashed blue curve shows bi-exponential fit of the pump-probe curve for the CNT metamaterial.

Fig. 5
Fig. 5

Power dependencies of nonlinear changes of transmission of the CNT metamaterial (solid red circles, top and right scales) measured at (a) 1820 nm and (b) 1960 nm. Black open circles on (b) show power dependence of the bare CNT layer (left and bottom scales) measured at 1960 nm. Vertical lines indicate saturation fluences for CNTs (black dotted line) and the CNT metamaterial (red dashed line). Dashed curves show theoretical fits using Eq. (2).

Fig. 6
Fig. 6

Modelling of nonlinear optical response of the CNT Metamaterial. (a) Absorption (left scale) and real part of refractive index (right scale) of the layer of CNTs in the CNT metamaterial at low (black solid line) and high (red dotted line) excitation intensities. (b) Absorption of the uncovered metamaterial (black) and the CNT metamaterial (blue) at low intensities. (c) Transmission of uncovered metamaterial (black) and metamaterial covered by CNTs at low (blue solid line) and high (red dotted line) excitation intensities. (d) Comparison of calculated (solid line) and experimental (circles) spectral dispersion of ΔT/T of the CNT metamaterial.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α(I)= α 0 1+I/ I sat + α ns
ΔT T (I)= (ΔT/T) sat 1+ I sat /I

Metrics