Abstract

We demonstrate the preparation and transmission of the lowest loss azimuthally polarized TE01- like mode in a photonic band gap (PBG) fiber. Using the nature of the mode and the properties of the band gap structure we construct a novel coupler that operates away from the band gap's center to enhance the differential losses and facilitate the radiative loss of hybrid fundamental fiber modes. Remarkably, even though the coupler is highly multimoded, a pure azimuthally polarized mode is generated after only 17cm. Theoretical calculations verify the validity of this technique and accurately predict the coupling efficiency. The generation and single mode propagation of this unique azimuthally polarized, doughnut shaped mode in a large hollow-core fiber can find numerous applications including in optical microscopy, optical tweezers, and guiding particles along the fiber.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barrow, “Transmission of electromagnetic waves in hollow metal tubes,” Proc. IRE 24, 1298–1328 (1936).
  2. J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides—mathematical theory,” Bell Syst. Tech. J. 15, 310–333 (1936).
  3. O. Shapira, A. F. Abouraddy, Q. Hu, D. Shemuly, J. D. Joannopoulos, and Y. Fink, “Enabling coherent superpositions of iso-frequency optical states in multimode fibers,” Opt. Express 18(12), 12622–12629 (2010).
    [CrossRef] [PubMed]
  4. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16(22), 17972–17981 (2008).
    [CrossRef] [PubMed]
  5. F. K. Fatemi, M. Bashkansky, E. Oh, and D. Park, “Efficient excitation of the TE01 hollow metal waveguide mode for atom guiding,” Opt. Express 18(1), 323–332 (2010).
    [CrossRef] [PubMed]
  6. Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures,” Opt. Express 15(20), 13404–13414 (2007).
    [CrossRef] [PubMed]
  7. M. Skorobogatiy, C. Anastassiou, S. G. Johnson, O. Weisberg, T. Engeness, S. Jacobs, R. Ahmad, and Y. Fink, “Quantitative characterization of higher-order mode converters in weakly multimoded fibers,” Opt. Express 11(22), 2838–2847 (2003).
    [CrossRef] [PubMed]
  8. O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
    [CrossRef] [PubMed]
  9. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
    [CrossRef] [PubMed]
  10. D. Shemuly, Z. M. Ruff, A. M. Stolyarov, G. Spektor, S. G. Johnson, Y. Fink, and O. Shapira are preparing a manuscript to be called “Asymmetric wave propagation in planar chiral fibers.”
  11. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68(9), 1196–1201 (1978).
    [CrossRef]
  12. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
    [CrossRef] [PubMed]
  13. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
    [CrossRef] [PubMed]
  14. Z. Wang, M. Dai, and J. Yin, “Atomic (or molecular) guiding using a blue-detuned doughnut mode in a hollow metallic waveguide,” Opt. Express 13(21), 8406–8423 (2005).
    [CrossRef] [PubMed]
  15. K. S. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [CrossRef] [PubMed]
  16. Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
    [PubMed]
  17. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
    [CrossRef] [PubMed]
  18. T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002).
    [CrossRef]
  19. M. Imai and E. H. Hara, “Excitation of the fundamental and low-order modes of optical fiber waveguides with gaussian beams. 2: offset beams,” Appl. Opt. 14(1), 169–173 (1975).
    [PubMed]
  20. Z. Ruff, D. Shemuly, X. Peng, O. Shapira, Z. Wang, and Y. Fink, “Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns,” Opt. Express 18(15), 15697–15703 (2010).
    [CrossRef] [PubMed]
  21. T. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, “Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,” Opt. Express 11(10), 1175–1196 (2003).
    [CrossRef] [PubMed]

2010

2008

2007

2005

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
[CrossRef] [PubMed]

Z. Wang, M. Dai, and J. Yin, “Atomic (or molecular) guiding using a blue-detuned doughnut mode in a hollow metallic waveguide,” Opt. Express 13(21), 8406–8423 (2005).
[CrossRef] [PubMed]

2003

2002

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[PubMed]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[CrossRef] [PubMed]

T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002).
[CrossRef]

2001

2000

1995

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

1978

1975

1936

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides—mathematical theory,” Bell Syst. Tech. J. 15, 310–333 (1936).

Abdolvand, A.

Abouraddy, A. F.

Ahmad, R.

Anastassiou, C.

Anderson, D. Z.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Bashkansky, M.

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Biener, G.

Bienstman, P.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[CrossRef] [PubMed]

Brown, T.

Carson, J. R.

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides—mathematical theory,” Bell Syst. Tech. J. 15, 310–333 (1936).

Chen, J. S. Y.

Cornell, E. A.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Courjon, D.

T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002).
[CrossRef]

Dai, M.

Engeness, T.

Euser, T. G.

Fatemi, F. K.

Fink, Y.

O. Shapira, A. F. Abouraddy, Q. Hu, D. Shemuly, J. D. Joannopoulos, and Y. Fink, “Enabling coherent superpositions of iso-frequency optical states in multimode fibers,” Opt. Express 18(12), 12622–12629 (2010).
[CrossRef] [PubMed]

Z. Ruff, D. Shemuly, X. Peng, O. Shapira, Z. Wang, and Y. Fink, “Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns,” Opt. Express 18(15), 15697–15703 (2010).
[CrossRef] [PubMed]

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
[CrossRef] [PubMed]

M. Skorobogatiy, C. Anastassiou, S. G. Johnson, O. Weisberg, T. Engeness, S. Jacobs, R. Ahmad, and Y. Fink, “Quantitative characterization of higher-order mode converters in weakly multimoded fibers,” Opt. Express 11(22), 2838–2847 (2003).
[CrossRef] [PubMed]

T. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, “Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,” Opt. Express 11(10), 1175–1196 (2003).
[CrossRef] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
[CrossRef] [PubMed]

D. Shemuly, Z. M. Ruff, A. M. Stolyarov, G. Spektor, S. G. Johnson, Y. Fink, and O. Shapira are preparing a manuscript to be called “Asymmetric wave propagation in planar chiral fibers.”

Grosjean, T.

T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002).
[CrossRef]

Hara, E. H.

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Hasman, E.

Hu, Q.

Ibanescu, M.

Imai, M.

Jacobs, S.

Joannopoulos, J. D.

O. Shapira, A. F. Abouraddy, Q. Hu, D. Shemuly, J. D. Joannopoulos, and Y. Fink, “Enabling coherent superpositions of iso-frequency optical states in multimode fibers,” Opt. Express 18(12), 12622–12629 (2010).
[CrossRef] [PubMed]

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
[CrossRef] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[CrossRef] [PubMed]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
[CrossRef] [PubMed]

Johnson, S. G.

Kaminski, C. F.

Kleiner, V.

Leger, J.

Lidorikis, E.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[CrossRef] [PubMed]

Marom, E.

Mead, S. P.

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides—mathematical theory,” Bell Syst. Tech. J. 15, 310–333 (1936).

Montgomery, D.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Niv, A.

Nold, J.

Oh, E.

Park, D.

Peng, X.

Renn, M. J.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Ruff, Z.

Ruff, Z. M.

D. Shemuly, Z. M. Ruff, A. M. Stolyarov, G. Spektor, S. G. Johnson, Y. Fink, and O. Shapira are preparing a manuscript to be called “Asymmetric wave propagation in planar chiral fibers.”

Russell, P. St. J.

Scharrer, M.

Schelkunoff, S. A.

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides—mathematical theory,” Bell Syst. Tech. J. 15, 310–333 (1936).

Shapira, O.

O. Shapira, A. F. Abouraddy, Q. Hu, D. Shemuly, J. D. Joannopoulos, and Y. Fink, “Enabling coherent superpositions of iso-frequency optical states in multimode fibers,” Opt. Express 18(12), 12622–12629 (2010).
[CrossRef] [PubMed]

Z. Ruff, D. Shemuly, X. Peng, O. Shapira, Z. Wang, and Y. Fink, “Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns,” Opt. Express 18(15), 15697–15703 (2010).
[CrossRef] [PubMed]

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
[CrossRef] [PubMed]

D. Shemuly, Z. M. Ruff, A. M. Stolyarov, G. Spektor, S. G. Johnson, Y. Fink, and O. Shapira are preparing a manuscript to be called “Asymmetric wave propagation in planar chiral fibers.”

Shemuly, D.

Skorobogatiy, M.

Skorobogatiy, M. A.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[CrossRef] [PubMed]

Soljacic, M.

Spajer, M.

T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002).
[CrossRef]

Spektor, G.

D. Shemuly, Z. M. Ruff, A. M. Stolyarov, G. Spektor, S. G. Johnson, Y. Fink, and O. Shapira are preparing a manuscript to be called “Asymmetric wave propagation in planar chiral fibers.”

Stolyarov, A. M.

D. Shemuly, Z. M. Ruff, A. M. Stolyarov, G. Spektor, S. G. Johnson, Y. Fink, and O. Shapira are preparing a manuscript to be called “Asymmetric wave propagation in planar chiral fibers.”

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Vdovin, O.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Wang, Z.

Weisberg, O.

Whyte, G.

Wieman, C. E.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Yariv, A.

Yeh, P.

Yin, J.

Yirmiyahu, Y.

Youngworth, K. S.

Zhan, Q.

Appl. Opt.

Bell Syst. Tech. J.

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides—mathematical theory,” Bell Syst. Tech. J. 15, 310–333 (1936).

J. Opt. Soc. Am.

Nature

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002).
[CrossRef] [PubMed]

Opt. Commun.

T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002).
[CrossRef]

Opt. Express

Z. Ruff, D. Shemuly, X. Peng, O. Shapira, Z. Wang, and Y. Fink, “Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns,” Opt. Express 18(15), 15697–15703 (2010).
[CrossRef] [PubMed]

T. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, “Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,” Opt. Express 11(10), 1175–1196 (2003).
[CrossRef] [PubMed]

Z. Wang, M. Dai, and J. Yin, “Atomic (or molecular) guiding using a blue-detuned doughnut mode in a hollow metallic waveguide,” Opt. Express 13(21), 8406–8423 (2005).
[CrossRef] [PubMed]

K. S. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[CrossRef] [PubMed]

Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[PubMed]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
[CrossRef] [PubMed]

O. Shapira, A. F. Abouraddy, Q. Hu, D. Shemuly, J. D. Joannopoulos, and Y. Fink, “Enabling coherent superpositions of iso-frequency optical states in multimode fibers,” Opt. Express 18(12), 12622–12629 (2010).
[CrossRef] [PubMed]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16(22), 17972–17981 (2008).
[CrossRef] [PubMed]

F. K. Fatemi, M. Bashkansky, E. Oh, and D. Park, “Efficient excitation of the TE01 hollow metal waveguide mode for atom guiding,” Opt. Express 18(1), 323–332 (2010).
[CrossRef] [PubMed]

Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures,” Opt. Express 15(20), 13404–13414 (2007).
[CrossRef] [PubMed]

M. Skorobogatiy, C. Anastassiou, S. G. Johnson, O. Weisberg, T. Engeness, S. Jacobs, R. Ahmad, and Y. Fink, “Quantitative characterization of higher-order mode converters in weakly multimoded fibers,” Opt. Express 11(22), 2838–2847 (2003).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett.

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[CrossRef] [PubMed]

Other

D. Shemuly, Z. M. Ruff, A. M. Stolyarov, G. Spektor, S. G. Johnson, Y. Fink, and O. Shapira are preparing a manuscript to be called “Asymmetric wave propagation in planar chiral fibers.”

W. L. Barrow, “Transmission of electromagnetic waves in hollow metal tubes,” Proc. IRE 24, 1298–1328 (1936).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a). Coupling coefficient between linearly polarized Gaussian beam and the TE01 mode as a function of offset. The offset is normalized by the fiber radius, R. (b) Measurement results of the mode at the output of the fiber at three offsets- center (0), 5μm to the left of the center (−0.2R) and 5μm to the right (0.2R).

Fig. 2
Fig. 2

Modes’ losses as a function of wavelength – a result of the simulation. The ratio between the loss of the TE01 mode and the loss of the other modes becomes higher as we go further away from the center of the band gap (here at 1.56μm).

Fig. 3
Fig. 3

(a) SEM of a spiral fiber (b) the hollow core and spiral bilayers- the light colored layers are made of chalcogenide glass (As2S3) the dark colored layers and cladding are made of poly(ether imide) (PEI). (c) The “seam” – the line that marks the beginning of the spiral (position marked by the yellow triangle) (d) Finite element simulation results – TE01 mode of spiral fiber. (e) Experimental results – TE01 as measured in a spiral fiber.

Fig. 4
Fig. 4

Setup and results: on the left there is a schematic of the setup, in the center – simulation results and on the right the measurements results. (a) Laser coupled to the coupler fiber. The coupling is at an offset and the laser wavelength is at the edge of the fiber band gap, producing the TE01 mode. (b) Laser is coupled to the test fiber. Setup is aligned and the laser wavelength is at the center of the test fiber band gap, producing the HE11 mode. (c) Full setup- the coupler is butt-coupled to the test fiber.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η c = 1 N A ( E t * × H t ' + H t * × E t ' ) z ^ dA,

Metrics