Abstract

In this paper, a strain-insensitive temperature sensor based on a dual polarization fiber grating laser is demonstrated. The laser is fabricated by inscribing two wavelength-matched Bragg gratings in an Er-doped fiber. It emits single-longitudinal-mode output in wavelength domain and generates a RF-domain signal as a beat note between the two polarization modes. A temperature sensor has been exploited by monitoring the beat frequency. The measured temperature sensitivity is −78.46 kHz/°C. Theoretical analysis suggests that the temperature response is a result of both the differences in thermo-optic coefficient and thermal expansion between the core and cladding. In contrast, the sensor is almost insensitive to applied axial strain. We found that the strain insensitivity is due to the compensation between the strain-induced birefringence change and the effect of the elongation/material index change. The proposed sensor can be applied for reliable and precise measurement of temperature independently, towards the applications in structural integrity, oil-well monitoring, aerospace engineering, and process control.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators, A. 82(1-3), 40–61 (2000).
    [CrossRef]
  2. J. D. C. Jones, “Review of fibre sensor techniques for temperature-strain discrimination,” in Proc. 12th International Conference Optical Fibre Sensors, Williamsburg, Virginia, USA, 36–39 (1997).
  3. B. O. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, “Simultaneous strain and temperature measurement using a single fibre Bragg grating,” Electron. Lett. 36(12), 1018–1019 (2000).
    [CrossRef]
  4. P. Lu, L. Men, and Q. Chen, “Resolving cross sensitivity of fiber Bragg gratings with different polymeric coatings,” Appl. Phys. Lett. 92(17), 171112 (2008).
    [CrossRef]
  5. H. Chi, X. M. Tao, D. X. Yang, and K. S. Chen, “Simultaneous measurement of axial strain, temperature, and transverse load by a superstructure fiber grating,” Opt. Lett. 26(24), 1949–1951 (2001).
    [CrossRef] [PubMed]
  6. T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, and K. P. Chen, “Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 36(18), 3542–3544 (2011).
    [CrossRef] [PubMed]
  7. L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
    [CrossRef]
  8. C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, “Fiber in-line Mach–Zehnder interferometer embedded in FBG for simultaneous refractive index and temperature measurement,” IEEE Photon. Technol. Lett. 22(22), 1686–1688 (2010).
    [CrossRef]
  9. C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Fabry–Pérot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement,” IEEE Sens. J. 12(1), 17–21 (2012).
    [CrossRef]
  10. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]
  11. G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, “Passive temperature-compensating package for optical fiber gratings,” Appl. Opt. 34(30), 6859–6861 (1995).
    [CrossRef] [PubMed]
  12. S. A. Wade, S. F. Collins, K. T. V. Grattan, and G. W. Baxter, “Strain-independent temperature measurement by use of a fluorescence intensity ratio technique in optical fiber,” Appl. Opt. 39(18), 3050–3052 (2000).
    [CrossRef] [PubMed]
  13. B.-O. Guan, T. Guo, Y. Zhang, Y.-N. Tan, and H.-Y. Tam “Polarimetric heterodyning fiber grating laser sensors,” Proc. SPIE 8034, 80340G (2011); http://dx.doi.org/10.1117/12.883785 .
  14. B. O. Guan, Y. N. Tan, and H. Y. Tam, “Dual polarization fiber grating laser hydrophone,” Opt. Express 17(22), 19544–19550 (2009).
    [CrossRef] [PubMed]
  15. S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
    [CrossRef]
  16. S. Y. Huang, J. N. Blake, and B. Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” J. Lightwave Technol. 8(1), 23–33 (1990).
    [CrossRef]
  17. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [CrossRef]
  18. L. Y. Shao, X. Dong, A. P. Zhang, H. Y. Tam, and S. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 19(20), 1598–1600 (2007).
    [CrossRef]
  19. Y. N. Tan, Y. Zhang, L. Jin, and B. O. Guan, “Simultaneous strain and temperature fiber grating laser sensor based on radio-frequency measurement,” Opt. Express 19(21), 20650–20656 (2011).
    [CrossRef] [PubMed]

2012 (1)

C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Fabry–Pérot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement,” IEEE Sens. J. 12(1), 17–21 (2012).
[CrossRef]

2011 (3)

2010 (1)

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, “Fiber in-line Mach–Zehnder interferometer embedded in FBG for simultaneous refractive index and temperature measurement,” IEEE Photon. Technol. Lett. 22(22), 1686–1688 (2010).
[CrossRef]

2009 (1)

2008 (1)

P. Lu, L. Men, and Q. Chen, “Resolving cross sensitivity of fiber Bragg gratings with different polymeric coatings,” Appl. Phys. Lett. 92(17), 171112 (2008).
[CrossRef]

2007 (1)

L. Y. Shao, X. Dong, A. P. Zhang, H. Y. Tam, and S. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 19(20), 1598–1600 (2007).
[CrossRef]

2006 (1)

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

2002 (1)

2001 (1)

2000 (3)

S. A. Wade, S. F. Collins, K. T. V. Grattan, and G. W. Baxter, “Strain-independent temperature measurement by use of a fluorescence intensity ratio technique in optical fiber,” Appl. Opt. 39(18), 3050–3052 (2000).
[CrossRef] [PubMed]

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators, A. 82(1-3), 40–61 (2000).
[CrossRef]

B. O. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, “Simultaneous strain and temperature measurement using a single fibre Bragg grating,” Electron. Lett. 36(12), 1018–1019 (2000).
[CrossRef]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

1995 (1)

1990 (1)

S. Y. Huang, J. N. Blake, and B. Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” J. Lightwave Technol. 8(1), 23–33 (1990).
[CrossRef]

1983 (1)

S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Baptista, J. M.

C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Fabry–Pérot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement,” IEEE Sens. J. 12(1), 17–21 (2012).
[CrossRef]

Baxter, G. W.

Bennion, I.

Blake, J. N.

S. Y. Huang, J. N. Blake, and B. Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” J. Lightwave Technol. 8(1), 23–33 (1990).
[CrossRef]

Canning, J.

Chen, K. P.

Chen, K. S.

Chen, Q.

P. Lu, L. Men, and Q. Chen, “Resolving cross sensitivity of fiber Bragg gratings with different polymeric coatings,” Appl. Phys. Lett. 92(17), 171112 (2008).
[CrossRef]

Chen, R.

Chen, T.

Chi, H.

Chung, W. H.

B. O. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, “Simultaneous strain and temperature measurement using a single fibre Bragg grating,” Electron. Lett. 36(12), 1018–1019 (2000).
[CrossRef]

Collins, S. F.

Cook, K.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Dong, X.

L. Y. Shao, X. Dong, A. P. Zhang, H. Y. Tam, and S. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 19(20), 1598–1600 (2007).
[CrossRef]

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

Dong, X. Y.

B. O. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, “Simultaneous strain and temperature measurement using a single fibre Bragg grating,” Electron. Lett. 36(12), 1018–1019 (2000).
[CrossRef]

Frazao, O.

C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Fabry–Pérot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement,” IEEE Sens. J. 12(1), 17–21 (2012).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Gouveia, C.

C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Fabry–Pérot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement,” IEEE Sens. J. 12(1), 17–21 (2012).
[CrossRef]

Grattan, K. T. V.

Guan, B. O.

Guan, B.-O.

B.-O. Guan, T. Guo, Y. Zhang, Y.-N. Tan, and H.-Y. Tam “Polarimetric heterodyning fiber grating laser sensors,” Proc. SPIE 8034, 80340G (2011); http://dx.doi.org/10.1117/12.883785 .

Guo, T.

B.-O. Guan, T. Guo, Y. Zhang, Y.-N. Tan, and H.-Y. Tam “Polarimetric heterodyning fiber grating laser sensors,” Proc. SPIE 8034, 80340G (2011); http://dx.doi.org/10.1117/12.883785 .

He, S.

L. Y. Shao, X. Dong, A. P. Zhang, H. Y. Tam, and S. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 19(20), 1598–1600 (2007).
[CrossRef]

Ho, S. L.

B. O. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, “Simultaneous strain and temperature measurement using a single fibre Bragg grating,” Electron. Lett. 36(12), 1018–1019 (2000).
[CrossRef]

Huang, S. Y.

S. Y. Huang, J. N. Blake, and B. Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” J. Lightwave Technol. 8(1), 23–33 (1990).
[CrossRef]

Jewart, C.

Jin, L.

Y. N. Tan, Y. Zhang, L. Jin, and B. O. Guan, “Simultaneous strain and temperature fiber grating laser sensor based on radio-frequency measurement,” Opt. Express 19(21), 20650–20656 (2011).
[CrossRef] [PubMed]

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

Jorge, P. A. S.

C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Fabry–Pérot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement,” IEEE Sens. J. 12(1), 17–21 (2012).
[CrossRef]

Kai, G.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Kim, B. Y.

S. Y. Huang, J. N. Blake, and B. Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” J. Lightwave Technol. 8(1), 23–33 (1990).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Krug, P. A.

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Liao, C. R.

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, “Fiber in-line Mach–Zehnder interferometer embedded in FBG for simultaneous refractive index and temperature measurement,” IEEE Photon. Technol. Lett. 22(22), 1686–1688 (2010).
[CrossRef]

Liu, B.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

Lu, P.

P. Lu, L. Men, and Q. Chen, “Resolving cross sensitivity of fiber Bragg gratings with different polymeric coatings,” Appl. Phys. Lett. 92(17), 171112 (2008).
[CrossRef]

Men, L.

P. Lu, L. Men, and Q. Chen, “Resolving cross sensitivity of fiber Bragg gratings with different polymeric coatings,” Appl. Phys. Lett. 92(17), 171112 (2008).
[CrossRef]

Ouellette, F.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Rashleigh, S. C.

S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
[CrossRef]

Shao, L. Y.

L. Y. Shao, X. Dong, A. P. Zhang, H. Y. Tam, and S. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 19(20), 1598–1600 (2007).
[CrossRef]

Shu, X.

Sun, T.

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators, A. 82(1-3), 40–61 (2000).
[CrossRef]

Tam, H. Y.

B. O. Guan, Y. N. Tan, and H. Y. Tam, “Dual polarization fiber grating laser hydrophone,” Opt. Express 17(22), 19544–19550 (2009).
[CrossRef] [PubMed]

L. Y. Shao, X. Dong, A. P. Zhang, H. Y. Tam, and S. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 19(20), 1598–1600 (2007).
[CrossRef]

B. O. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, “Simultaneous strain and temperature measurement using a single fibre Bragg grating,” Electron. Lett. 36(12), 1018–1019 (2000).
[CrossRef]

Tam, H.-Y.

B.-O. Guan, T. Guo, Y. Zhang, Y.-N. Tan, and H.-Y. Tam “Polarimetric heterodyning fiber grating laser sensors,” Proc. SPIE 8034, 80340G (2011); http://dx.doi.org/10.1117/12.883785 .

Tan, Y. N.

Tan, Y.-N.

B.-O. Guan, T. Guo, Y. Zhang, Y.-N. Tan, and H.-Y. Tam “Polarimetric heterodyning fiber grating laser sensors,” Proc. SPIE 8034, 80340G (2011); http://dx.doi.org/10.1117/12.883785 .

Tao, X. M.

Thorncraft, D. A.

Tu, Q.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

Wade, S. A.

Wang, D. N.

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, “Fiber in-line Mach–Zehnder interferometer embedded in FBG for simultaneous refractive index and temperature measurement,” IEEE Photon. Technol. Lett. 22(22), 1686–1688 (2010).
[CrossRef]

Wang, Y.

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, “Fiber in-line Mach–Zehnder interferometer embedded in FBG for simultaneous refractive index and temperature measurement,” IEEE Photon. Technol. Lett. 22(22), 1686–1688 (2010).
[CrossRef]

Yang, D. X.

Yang, M. W.

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, “Fiber in-line Mach–Zehnder interferometer embedded in FBG for simultaneous refractive index and temperature measurement,” IEEE Photon. Technol. Lett. 22(22), 1686–1688 (2010).
[CrossRef]

Yoffe, G. W.

Zhang, A. P.

L. Y. Shao, X. Dong, A. P. Zhang, H. Y. Tam, and S. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 19(20), 1598–1600 (2007).
[CrossRef]

Zhang, B.

Zhang, H.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

Zhang, L.

Zhang, W.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

Zhang, Y.

Y. N. Tan, Y. Zhang, L. Jin, and B. O. Guan, “Simultaneous strain and temperature fiber grating laser sensor based on radio-frequency measurement,” Opt. Express 19(21), 20650–20656 (2011).
[CrossRef] [PubMed]

B.-O. Guan, T. Guo, Y. Zhang, Y.-N. Tan, and H.-Y. Tam “Polarimetric heterodyning fiber grating laser sensors,” Proc. SPIE 8034, 80340G (2011); http://dx.doi.org/10.1117/12.883785 .

Zhao, J.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. Lu, L. Men, and Q. Chen, “Resolving cross sensitivity of fiber Bragg gratings with different polymeric coatings,” Appl. Phys. Lett. 92(17), 171112 (2008).
[CrossRef]

Electron. Lett. (1)

B. O. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, “Simultaneous strain and temperature measurement using a single fibre Bragg grating,” Electron. Lett. 36(12), 1018–1019 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

L. Y. Shao, X. Dong, A. P. Zhang, H. Y. Tam, and S. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 19(20), 1598–1600 (2007).
[CrossRef]

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photon. Technol. Lett. 18(1), 154–156 (2006).
[CrossRef]

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, “Fiber in-line Mach–Zehnder interferometer embedded in FBG for simultaneous refractive index and temperature measurement,” IEEE Photon. Technol. Lett. 22(22), 1686–1688 (2010).
[CrossRef]

IEEE Sens. J. (1)

C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Fabry–Pérot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement,” IEEE Sens. J. 12(1), 17–21 (2012).
[CrossRef]

J. Lightwave Technol. (4)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
[CrossRef]

S. Y. Huang, J. N. Blake, and B. Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” J. Lightwave Technol. 8(1), 23–33 (1990).
[CrossRef]

X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (1)

B.-O. Guan, T. Guo, Y. Zhang, Y.-N. Tan, and H.-Y. Tam “Polarimetric heterodyning fiber grating laser sensors,” Proc. SPIE 8034, 80340G (2011); http://dx.doi.org/10.1117/12.883785 .

Sens. Actuators, A. (1)

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators, A. 82(1-3), 40–61 (2000).
[CrossRef]

Other (1)

J. D. C. Jones, “Review of fibre sensor techniques for temperature-strain discrimination,” in Proc. 12th International Conference Optical Fibre Sensors, Williamsburg, Virginia, USA, 36–39 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of the proposed sensor. PD: Photodetector. WDM: Wavelength division multiplexer. PC: Polarization controller. ISO: Isolator.

Fig. 2
Fig. 2

Measured RF spectrum of the beat signal from the fiber grating laser. Inset, optical spectrum of the laser output.

Fig. 3
Fig. 3

Measured temperature responses of the unstrained and strained sensor. The red curve represents the linear fit at 400με.

Fig. 4
Fig. 4

Measured strain responses of the sensor at 20 °C(a) and 50 °C(b), respectively.

Fig. 5
Fig. 5

Calculated temperature sensitivity as a function of the core/cladding difference in (a) thermo-optic and (b) thermal-expansion coefficients, respectively.

Fig. 6
Fig. 6

Calculated strain sensitivity as a function of the core/cladding difference in (a) elastic-optic coefficient and (b) Poisson ratio, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δν= cB n 0 λ 0
Δν= cB 2 n 0 2 Λ
δ( Δν ) δT =Δν[ 1 B δB δT ( α+2β ) ]
δ( Δν ) δε =Δν[ 1 B δB δε ( 12pe ) ]

Metrics