Abstract

A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with build-in gain shaping is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes define the large-mode-area core. Light confinement is achieved by combined index and bandgap guiding, which allows for single-mode operation and gain shaping through distributed spectral filtering of amplified spontaneous emission. The fiber properties are ideal for amplification in the long wavelength regime of the Ytterbium gain spectrum above 1100 nm, and red shifting of the maximum gain to 1130 nm is demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shirakawa, C. B. Olausson, H. Maruyama, K. I. Ueda, J. K. Lyngsø, and J. Broeng, “High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology,” Opt. Fiber Technol.16(6), 449–457 (2010).
    [CrossRef]
  2. N. Saito, K. Akagawa, M. Ito, A. Takazawa, Y. Hayano, Y. Saito, M. Ito, H. Takami, M. Iye, and S. Wada, “Sodium D2 resonance radiation in single-pass sum-frequency generation with actively mode-locked Nd:YAG lasers,” Opt. Lett.32(14), 1965–1967 (2007).
    [CrossRef] [PubMed]
  3. C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joycec, and M. Liang, “Update on the TMT laser guide star facility design,” Proc. SPIE7015, 70152N, 70152N-12 (2008).
    [CrossRef]
  4. J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron.13(3), 537–545 (2007).
    [CrossRef]
  5. A. Cerqueira S, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express14(2), 926–931 (2006).
    [CrossRef] [PubMed]
  6. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. St J Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express13(7), 2503–2511 (2005).
    [CrossRef] [PubMed]
  7. E. Coscelli, F. Poli, S. R. Petersen, T. T. Alkeskjold, A. Cucinotta, S. Selleri, L. Leick, and J. Broeng, “Anti-symmetric hybrid photonic crystal fibers with enhanced filtering and bending properties,” SPIE Photonics West 2012, Jan 21–26, San Francisco CA, USA, paper 8237–129 (2012), (to be published).
  8. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express16(10), 7233–7243 (2008).
    [CrossRef] [PubMed]
  9. S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express15(23), 15402–15409 (2007).
    [CrossRef] [PubMed]
  10. F. Jansen, F. Stutzki, H.-J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, and A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express18(26), 26834–26842 (2010).
    [CrossRef] [PubMed]
  11. T. T. Alkeskjold, “Large-mode-area ytterbium-doped fiber amplifier with distributed narrow spectral filtering and reduced bend sensitivity,” Opt. Express17(19), 16394–16405 (2009).
    [CrossRef] [PubMed]
  12. A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, and M. Zoboli, “Amplification properties of Er3+-doped photonic crystal fibers,” J. Lightwave Technol.21(3), 782–788 (2003).
    [CrossRef]
  13. F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibers: Properties and Applications, 1st ed. (Springer, 2007).
  14. R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express16(23), 18752–18763 (2008).
    [CrossRef] [PubMed]
  15. J. Nilsson, “High-power fiber sources,” SPIE Photonics West, Short Course, sc748, (2011).

2010

A. Shirakawa, C. B. Olausson, H. Maruyama, K. I. Ueda, J. K. Lyngsø, and J. Broeng, “High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology,” Opt. Fiber Technol.16(6), 449–457 (2010).
[CrossRef]

F. Jansen, F. Stutzki, H.-J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, and A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express18(26), 26834–26842 (2010).
[CrossRef] [PubMed]

2009

2008

2007

2006

2005

2003

Akagawa, K.

Alkeskjold, T. T.

Argyros, A.

Baumgartl, M.

Birks, T. A.

Boyer, C.

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joycec, and M. Liang, “Update on the TMT laser guide star facility design,” Proc. SPIE7015, 70152N, 70152N-12 (2008).
[CrossRef]

Broeng, J.

A. Shirakawa, C. B. Olausson, H. Maruyama, K. I. Ueda, J. K. Lyngsø, and J. Broeng, “High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology,” Opt. Fiber Technol.16(6), 449–457 (2010).
[CrossRef]

Cerqueira S, A.

Cordeiro, C. M. B.

Cucinotta, A.

Eberhardt, R.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron.13(3), 537–545 (2007).
[CrossRef]

Eggleton, B. J.

Ellerbroek, B.

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joycec, and M. Liang, “Update on the TMT laser guide star facility design,” Proc. SPIE7015, 70152N, 70152N-12 (2008).
[CrossRef]

Fleming, S.

Gedig, M.

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joycec, and M. Liang, “Update on the TMT laser guide star facility design,” Proc. SPIE7015, 70152N, 70152N-12 (2008).
[CrossRef]

George, A. K.

Ghalmi, S.

Goto, R.

Hayano, Y.

Hileman, E.

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joycec, and M. Liang, “Update on the TMT laser guide star facility design,” Proc. SPIE7015, 70152N, 70152N-12 (2008).
[CrossRef]

Himeno, K.

Ito, M.

Iye, M.

Jackson, S. D.

Jansen, F.

Jauregui, C.

Joycec, R.

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joycec, and M. Liang, “Update on the TMT laser guide star facility design,” Proc. SPIE7015, 70152N, 70152N-12 (2008).
[CrossRef]

Klingebiel, S.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron.13(3), 537–545 (2007).
[CrossRef]

Knight, J. C.

Kuhlmey, B. T.

Leon-Saval, S. G.

Liang, M.

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joycec, and M. Liang, “Update on the TMT laser guide star facility design,” Proc. SPIE7015, 70152N, 70152N-12 (2008).
[CrossRef]

Limpert, J.

F. Jansen, F. Stutzki, H.-J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, and A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express18(26), 26834–26842 (2010).
[CrossRef] [PubMed]

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron.13(3), 537–545 (2007).
[CrossRef]

Luan, F.

Lyngsø, J. K.

A. Shirakawa, C. B. Olausson, H. Maruyama, K. I. Ueda, J. K. Lyngsø, and J. Broeng, “High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology,” Opt. Fiber Technol.16(6), 449–457 (2010).
[CrossRef]

Maruyama, H.

A. Shirakawa, C. B. Olausson, H. Maruyama, K. I. Ueda, J. K. Lyngsø, and J. Broeng, “High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology,” Opt. Fiber Technol.16(6), 449–457 (2010).
[CrossRef]

Nicholson, J. W.

Olausson, C. B.

A. Shirakawa, C. B. Olausson, H. Maruyama, K. I. Ueda, J. K. Lyngsø, and J. Broeng, “High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology,” Opt. Fiber Technol.16(6), 449–457 (2010).
[CrossRef]

Otto, H.-J.

Peschel, T.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron.13(3), 537–545 (2007).
[CrossRef]

Poli, F.

Ramachandran, S.

Röser, F.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron.13(3), 537–545 (2007).
[CrossRef]

Saito, N.

Saito, Y.

Schreiber, T.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron.13(3), 537–545 (2007).
[CrossRef]

Selleri, S.

Shirakawa, A.

A. Shirakawa, C. B. Olausson, H. Maruyama, K. I. Ueda, J. K. Lyngsø, and J. Broeng, “High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology,” Opt. Fiber Technol.16(6), 449–457 (2010).
[CrossRef]

St J Russell, P.

Stutzki, F.

Takami, H.

Takazawa, A.

Tünnermann, A.

F. Jansen, F. Stutzki, H.-J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, and A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express18(26), 26834–26842 (2010).
[CrossRef] [PubMed]

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron.13(3), 537–545 (2007).
[CrossRef]

Ueda, K. I.

A. Shirakawa, C. B. Olausson, H. Maruyama, K. I. Ueda, J. K. Lyngsø, and J. Broeng, “High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology,” Opt. Fiber Technol.16(6), 449–457 (2010).
[CrossRef]

Vincetti, L.

Wada, S.

Wielandy, S.

Wirth, C.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron.13(3), 537–545 (2007).
[CrossRef]

Yablon, A. D.

Zoboli, M.

IEEE J. Sel. Top. Quantum Electron.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron.13(3), 537–545 (2007).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Fiber Technol.

A. Shirakawa, C. B. Olausson, H. Maruyama, K. I. Ueda, J. K. Lyngsø, and J. Broeng, “High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology,” Opt. Fiber Technol.16(6), 449–457 (2010).
[CrossRef]

Opt. Lett.

Proc. SPIE

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joycec, and M. Liang, “Update on the TMT laser guide star facility design,” Proc. SPIE7015, 70152N, 70152N-12 (2008).
[CrossRef]

Other

E. Coscelli, F. Poli, S. R. Petersen, T. T. Alkeskjold, A. Cucinotta, S. Selleri, L. Leick, and J. Broeng, “Anti-symmetric hybrid photonic crystal fibers with enhanced filtering and bending properties,” SPIE Photonics West 2012, Jan 21–26, San Francisco CA, USA, paper 8237–129 (2012), (to be published).

F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibers: Properties and Applications, 1st ed. (Springer, 2007).

J. Nilsson, “High-power fiber sources,” SPIE Photonics West, Short Course, sc748, (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Microscope image of the asymmetric hybrid large-mode-area photonic crystal fiber. The grey background is silica, the black dots are air holes, and the white regions are Germanium-doped silica. (b) Schematic illustration of the fiber coil control by a double-D-shaped silica jacket.

Fig. 2
Fig. 2

The guiding properties of the asymmetric hybrid photonic crystal fiber illustrated with transmission spectra. (a) and (b) show transmission windows corresponding to bandgaps caused by the large and small Germanium-doped silica rods, respectively. (c) shows the transmission window of the hybrid photonic crystal fiber where both sizes of Germanium-doped rods are present.

Fig. 3
Fig. 3

White light transmission spectra of fiber A, (a), and fiber B, (b), coiled with a single turn of different diameter. The power increase for wavelengths shorter than ~900 nm in (a) is an artefact of the optical spectrum analyzer and not a guiding property of the fiber. The same three transmission bands are observed in both fibers; transmission band α, β, and γ.

Fig. 4
Fig. 4

Bending loss in transmission band α, β, and γ as a function of coil diameter. The largest coil diameter is used as a reference of zero bending loss.

Fig. 5
Fig. 5

White light transmission spectra of fiber A. In (a) transmission band β is seen, in (b) transmission band γ. In the bent case the fiber is coiled with three turns to a coil diameter of 20 cm, such that the entire fiber is bent.

Fig. 6
Fig. 6

Near-field images of the output of fiber B at 1100 nm. The input is translated along the Ge-doped rods (top row) and orthogonally to the Ge-doped rods (bottom row). The center images show the input launched directly in the core. Only the fundamental mode is observed.

Fig. 7
Fig. 7

(a) Calculated overlap integral of the fundamental mode with doped core region for the 1- and 3-row design, simulated with a coil of diameter 40 cm. (b) White light transmission spectra of the 1- and 3-row design scaled according to maximum power value. The fibers are coiled with a single turn of diameter 45 cm. The wavelength, λ, is normalized to the pitch size, Λ.

Fig. 8
Fig. 8

Magnetic field modulus distribution of the LP11-like mode in (a) the 1-row design and (b) the 3-row design at λ/Λ = 0.113. The mode distribution is calculated with a full-vector modal solver based on the finite element method [13]. For (a) the overlap integral of the fundamental mode with the doped core region is 0.71, for (b) the value is 0.47.

Fig. 9
Fig. 9

(a) Calculated modal birefringence in the 1- and 3-row design. The modal birefringence is increased with a factor of ~2.7 in the 3-row design. (b) Polarization properties of transmission band γ.

Fig. 10
Fig. 10

Near-field images of the output of fiber C at 1178 nm. The input is translated along the Ge-doped rods (top row) and orthogonally to the Ge-doped rods (bottom row). The center images show the input launched directly in the core. Only the fundamental mode is observed.

Fig. 11
Fig. 11

(a) Gain spectra of an Yb3+-doped aluminosilicate fiber for different fractions of excited Ytterbium-ions, n2, given in the legend. The gain is calculated according to Eq. (2) for an Ytterbium concentration of N0 = 0.38 · 1020 cm−3, and for a signal mode overlap with the doped core region of Γs = 1. (b) Gain shaping in fiber C of the spectra shown in (a). For n2 ≤ 0.2 the maximum gain is obtained at 1130 nm. The peak observed at 1064 nm is due to the light source used in the transmission measurement in fiber C, and will therefore not influence the gain shaping in the amplifier.

Metrics