Abstract

We present a novel approach for terahertz time-domain spectroscopy of magneto-optic phenomena. The setup used in this work combines a tabletop pulsed magnet and a standard terahertz time-domain spectroscopy system. The approach is based on repetitive operation of the pulsed magnet and step-wise increment of the delay time of the time-domain spectroscopy system. The method is demonstrated by plotting the magneto-transmission spectra of linearly polarized THz pulses through the hole gas of a Ge sample and the electron gas of GaAs, InSb and InAs samples. Cyclotron resonance spectra are displayed in the frequency range from 200 GHz to 2 THz and for a magnetic field up to 6 T. The GaAs spectra are analyzed in more detail using simulations based on the Drude model.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Some and A. Nurmikko, “Real-time electron cyclotron oscillations observed by terahertz techniques in semiconductor heterostructures,” Appl. Phys. Lett. 65, 3377–3379 (1994).
    [CrossRef]
  2. S. A. Crooker, “Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields,” Rev. Sci. Instrum. 73, 3258–3264 (2002).
    [CrossRef]
  3. X. Wang, D. J. Hilton, L. Ren, D. M. Mittleman, J. Kono, and J. L. Reno, “Terahertz time-domain magnetospectroscopy of a high-mobility two-dimensional electron gas,” Opt. Lett. 32, 1845–1847 (2007).
    [CrossRef] [PubMed]
  4. X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
    [CrossRef]
  5. X. Wang, D. J. Hilton, J. L. Reno, D. M. Mittleman, and J. Kono, “Direct measurement of cyclotron coherence times of high-mobility two-dimensional electron gases,” Opt. Express 18, 12354–12361 (2010).
    [CrossRef] [PubMed]
  6. Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto, H. Aoki, and R. Shimano, “Optical Hall Effect in the Integer Quantum Hall Regime,” Phys. Rev. Lett. 104, 256802 (2010).
    [CrossRef] [PubMed]
  7. T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, “Quantum control of Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses,” Phys. Rev. B 84, 241307(R) (2011).
    [CrossRef]
  8. J. Kono, “Cyclotron Resonance,” in Methods in Materials Research, E. N. Kaufmann, ed. (John Wiley & Sons, New York, 2001).
  9. D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “High-speed terahertz time-domain spectroscopy of cyclotron resonance in pulsed magnetic field,” Opt. Express 18, 26163–26168 (2010).
    [CrossRef] [PubMed]
  10. F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82, 053102 (2011).
    [CrossRef] [PubMed]
  11. D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “Terahertz time-domain magneto-optics using pulsed magnetic fields,” Proc. IEEE, IRMMW-THz 2011 (2011).
  12. E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys. 33, 1193 (1970).
    [CrossRef]
  13. B. L. Cardozo, “GaAs Blocked-Impurity-Band Detectors for Far-Infrared Astronomy,” Ph.D. thesis, University of Berkeley, California (2004).
  14. X. Wang, “Time-Domain Terahertz Magneto-Spectroscopy of Semiconductors,” Ph.D. thesis, Rice University (2009).
  15. K. Suzuki and J. C. Hensel, “Quantum resonances in the valence bands of germanium,” Phys. Rev. B 9, 4184–4218 (1974).
    [CrossRef]
  16. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815 (2001).
    [CrossRef]

2011 (2)

T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, “Quantum control of Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses,” Phys. Rev. B 84, 241307(R) (2011).
[CrossRef]

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82, 053102 (2011).
[CrossRef] [PubMed]

2010 (4)

D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “High-speed terahertz time-domain spectroscopy of cyclotron resonance in pulsed magnetic field,” Opt. Express 18, 26163–26168 (2010).
[CrossRef] [PubMed]

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[CrossRef]

X. Wang, D. J. Hilton, J. L. Reno, D. M. Mittleman, and J. Kono, “Direct measurement of cyclotron coherence times of high-mobility two-dimensional electron gases,” Opt. Express 18, 12354–12361 (2010).
[CrossRef] [PubMed]

Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto, H. Aoki, and R. Shimano, “Optical Hall Effect in the Integer Quantum Hall Regime,” Phys. Rev. Lett. 104, 256802 (2010).
[CrossRef] [PubMed]

2007 (1)

2002 (1)

S. A. Crooker, “Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields,” Rev. Sci. Instrum. 73, 3258–3264 (2002).
[CrossRef]

2001 (1)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815 (2001).
[CrossRef]

1994 (1)

D. Some and A. Nurmikko, “Real-time electron cyclotron oscillations observed by terahertz techniques in semiconductor heterostructures,” Appl. Phys. Lett. 65, 3377–3379 (1994).
[CrossRef]

1974 (1)

K. Suzuki and J. C. Hensel, “Quantum resonances in the valence bands of germanium,” Phys. Rev. B 9, 4184–4218 (1974).
[CrossRef]

1970 (1)

E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys. 33, 1193 (1970).
[CrossRef]

Aoki, H.

Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto, H. Aoki, and R. Shimano, “Optical Hall Effect in the Integer Quantum Hall Regime,” Phys. Rev. Lett. 104, 256802 (2010).
[CrossRef] [PubMed]

Arikawa, T.

T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, “Quantum control of Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses,” Phys. Rev. B 84, 241307(R) (2011).
[CrossRef]

Beigang, R.

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82, 053102 (2011).
[CrossRef] [PubMed]

D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “High-speed terahertz time-domain spectroscopy of cyclotron resonance in pulsed magnetic field,” Opt. Express 18, 26163–26168 (2010).
[CrossRef] [PubMed]

D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “Terahertz time-domain magneto-optics using pulsed magnetic fields,” Proc. IEEE, IRMMW-THz 2011 (2011).

Belyanin, A. A.

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[CrossRef]

Cardozo, B. L.

B. L. Cardozo, “GaAs Blocked-Impurity-Band Detectors for Far-Infrared Astronomy,” Ph.D. thesis, University of Berkeley, California (2004).

Crooker, S. A.

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[CrossRef]

S. A. Crooker, “Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields,” Rev. Sci. Instrum. 73, 3258–3264 (2002).
[CrossRef]

Ellrich, F.

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82, 053102 (2011).
[CrossRef] [PubMed]

D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “High-speed terahertz time-domain spectroscopy of cyclotron resonance in pulsed magnetic field,” Opt. Express 18, 26163–26168 (2010).
[CrossRef] [PubMed]

D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “Terahertz time-domain magneto-optics using pulsed magnetic fields,” Proc. IEEE, IRMMW-THz 2011 (2011).

Furdyna, J. K.

E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys. 33, 1193 (1970).
[CrossRef]

George, S.

D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “High-speed terahertz time-domain spectroscopy of cyclotron resonance in pulsed magnetic field,” Opt. Express 18, 26163–26168 (2010).
[CrossRef] [PubMed]

D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “Terahertz time-domain magneto-optics using pulsed magnetic fields,” Proc. IEEE, IRMMW-THz 2011 (2011).

Goiran, M.

D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “High-speed terahertz time-domain spectroscopy of cyclotron resonance in pulsed magnetic field,” Opt. Express 18, 26163–26168 (2010).
[CrossRef] [PubMed]

D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “Terahertz time-domain magneto-optics using pulsed magnetic fields,” Proc. IEEE, IRMMW-THz 2011 (2011).

Hensel, J. C.

K. Suzuki and J. C. Hensel, “Quantum resonances in the valence bands of germanium,” Phys. Rev. B 9, 4184–4218 (1974).
[CrossRef]

Hilton, D. J.

Ikebe, Y.

Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto, H. Aoki, and R. Shimano, “Optical Hall Effect in the Integer Quantum Hall Regime,” Phys. Rev. Lett. 104, 256802 (2010).
[CrossRef] [PubMed]

Jonuscheit, J.

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82, 053102 (2011).
[CrossRef] [PubMed]

Keilmann, F.

D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “High-speed terahertz time-domain spectroscopy of cyclotron resonance in pulsed magnetic field,” Opt. Express 18, 26163–26168 (2010).
[CrossRef] [PubMed]

D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “Terahertz time-domain magneto-optics using pulsed magnetic fields,” Proc. IEEE, IRMMW-THz 2011 (2011).

Kono, J.

T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, “Quantum control of Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses,” Phys. Rev. B 84, 241307(R) (2011).
[CrossRef]

X. Wang, D. J. Hilton, J. L. Reno, D. M. Mittleman, and J. Kono, “Direct measurement of cyclotron coherence times of high-mobility two-dimensional electron gases,” Opt. Express 18, 12354–12361 (2010).
[CrossRef] [PubMed]

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[CrossRef]

X. Wang, D. J. Hilton, L. Ren, D. M. Mittleman, J. Kono, and J. L. Reno, “Terahertz time-domain magnetospectroscopy of a high-mobility two-dimensional electron gas,” Opt. Lett. 32, 1845–1847 (2007).
[CrossRef] [PubMed]

J. Kono, “Cyclotron Resonance,” in Methods in Materials Research, E. N. Kaufmann, ed. (John Wiley & Sons, New York, 2001).

Léotin, J.

D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “High-speed terahertz time-domain spectroscopy of cyclotron resonance in pulsed magnetic field,” Opt. Express 18, 26163–26168 (2010).
[CrossRef] [PubMed]

D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “Terahertz time-domain magneto-optics using pulsed magnetic fields,” Proc. IEEE, IRMMW-THz 2011 (2011).

Masutomi, R.

Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto, H. Aoki, and R. Shimano, “Optical Hall Effect in the Integer Quantum Hall Regime,” Phys. Rev. Lett. 104, 256802 (2010).
[CrossRef] [PubMed]

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815 (2001).
[CrossRef]

Mittleman, D. M.

Molter, D.

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82, 053102 (2011).
[CrossRef] [PubMed]

D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “High-speed terahertz time-domain spectroscopy of cyclotron resonance in pulsed magnetic field,” Opt. Express 18, 26163–26168 (2010).
[CrossRef] [PubMed]

D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “Terahertz time-domain magneto-optics using pulsed magnetic fields,” Proc. IEEE, IRMMW-THz 2011 (2011).

Morimoto, T.

Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto, H. Aoki, and R. Shimano, “Optical Hall Effect in the Integer Quantum Hall Regime,” Phys. Rev. Lett. 104, 256802 (2010).
[CrossRef] [PubMed]

Nurmikko, A.

D. Some and A. Nurmikko, “Real-time electron cyclotron oscillations observed by terahertz techniques in semiconductor heterostructures,” Appl. Phys. Lett. 65, 3377–3379 (1994).
[CrossRef]

Okamoto, T.

Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto, H. Aoki, and R. Shimano, “Optical Hall Effect in the Integer Quantum Hall Regime,” Phys. Rev. Lett. 104, 256802 (2010).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys. 33, 1193 (1970).
[CrossRef]

Pan, W.

T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, “Quantum control of Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses,” Phys. Rev. B 84, 241307(R) (2011).
[CrossRef]

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815 (2001).
[CrossRef]

Ren, L.

Reno, J. L.

Shimano, R.

Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto, H. Aoki, and R. Shimano, “Optical Hall Effect in the Integer Quantum Hall Regime,” Phys. Rev. Lett. 104, 256802 (2010).
[CrossRef] [PubMed]

Some, D.

D. Some and A. Nurmikko, “Real-time electron cyclotron oscillations observed by terahertz techniques in semiconductor heterostructures,” Appl. Phys. Lett. 65, 3377–3379 (1994).
[CrossRef]

Suzuki, K.

K. Suzuki and J. C. Hensel, “Quantum resonances in the valence bands of germanium,” Phys. Rev. B 9, 4184–4218 (1974).
[CrossRef]

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815 (2001).
[CrossRef]

Wang, X.

T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, “Quantum control of Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses,” Phys. Rev. B 84, 241307(R) (2011).
[CrossRef]

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[CrossRef]

X. Wang, D. J. Hilton, J. L. Reno, D. M. Mittleman, and J. Kono, “Direct measurement of cyclotron coherence times of high-mobility two-dimensional electron gases,” Opt. Express 18, 12354–12361 (2010).
[CrossRef] [PubMed]

X. Wang, D. J. Hilton, L. Ren, D. M. Mittleman, J. Kono, and J. L. Reno, “Terahertz time-domain magnetospectroscopy of a high-mobility two-dimensional electron gas,” Opt. Lett. 32, 1845–1847 (2007).
[CrossRef] [PubMed]

X. Wang, “Time-Domain Terahertz Magneto-Spectroscopy of Semiconductors,” Ph.D. thesis, Rice University (2009).

Weinland, T.

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82, 053102 (2011).
[CrossRef] [PubMed]

D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “High-speed terahertz time-domain spectroscopy of cyclotron resonance in pulsed magnetic field,” Opt. Express 18, 26163–26168 (2010).
[CrossRef] [PubMed]

D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “Terahertz time-domain magneto-optics using pulsed magnetic fields,” Proc. IEEE, IRMMW-THz 2011 (2011).

Appl. Phys. Lett. (1)

D. Some and A. Nurmikko, “Real-time electron cyclotron oscillations observed by terahertz techniques in semiconductor heterostructures,” Appl. Phys. Lett. 65, 3377–3379 (1994).
[CrossRef]

J. Appl. Phys. (1)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815 (2001).
[CrossRef]

Nat. Phys. (1)

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

K. Suzuki and J. C. Hensel, “Quantum resonances in the valence bands of germanium,” Phys. Rev. B 9, 4184–4218 (1974).
[CrossRef]

T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, “Quantum control of Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses,” Phys. Rev. B 84, 241307(R) (2011).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto, H. Aoki, and R. Shimano, “Optical Hall Effect in the Integer Quantum Hall Regime,” Phys. Rev. Lett. 104, 256802 (2010).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys. 33, 1193 (1970).
[CrossRef]

Rev. Sci. Instrum. (2)

S. A. Crooker, “Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields,” Rev. Sci. Instrum. 73, 3258–3264 (2002).
[CrossRef]

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82, 053102 (2011).
[CrossRef] [PubMed]

Other (4)

D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “Terahertz time-domain magneto-optics using pulsed magnetic fields,” Proc. IEEE, IRMMW-THz 2011 (2011).

J. Kono, “Cyclotron Resonance,” in Methods in Materials Research, E. N. Kaufmann, ed. (John Wiley & Sons, New York, 2001).

B. L. Cardozo, “GaAs Blocked-Impurity-Band Detectors for Far-Infrared Astronomy,” Ph.D. thesis, University of Berkeley, California (2004).

X. Wang, “Time-Domain Terahertz Magneto-Spectroscopy of Semiconductors,” Ph.D. thesis, Rice University (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Comparison of the step-scan approach with the fast-scan approach from [9]. Instead of repetitive measurements of the time-domain traces during a single shot of the magnet, the electric field of the THz pulse is measured during repetitive operation of a short-duration pulsed magnet. The traces presented here are real measurement data, but trimmed for better readability. Typical values for τFWHM and Trep are 2.5 ms and about 7 s respectively.

Fig. 2
Fig. 2

Experimental setup used in this work. The output of a mode-locked Ti:sapphire laser with a center emission wavelength of 780 nm is used. LT-GaAs photoconductive switches are used as emitter and detector and are pumped with an average optical power of 20 mW each. Four off-axis mirrors are used to guide the THz beam and to provide a focus, in which the magnet is placed.

Fig. 3
Fig. 3

Photos of the assembled (a) and disassembled (b) magnet cryostat. The magnet coil is held by two glass fibre tubes, which are themselves attached to the walls of a small polycarbonate container. This transparent polycarbonate tube is intended to hold the liquid nitrogen during operation and has a slit in the top part for refilling and leakage of nitrogen gas. The outer polycarbonate tube serves as thermal isolation and is flooded by the evaporated nitrogen in the experiment.

Fig. 4
Fig. 4

(a) Tabletop power supply of the pulsed magnet employing two 500 V, 1 mF capacitors. (b) Liquid nitrogen refilling of the pulsed magnet during operation. (c) Sample holder with pickup coil.

Fig. 5
Fig. 5

Change of the detected THz electric field amplitude as a function of delay time and magnet time for n-GaAs displayed as an intensity plot as well as conventional plots extracted thereof. The THz amplitude values for no magnetic field are subtracted from the measured data to obtain these differential plots. In addition, the magnetic field pulse is shown.

Fig. 6
Fig. 6

Change of the detected THz electric field amplitude as a function of delay time and magnet time for p-Ge displayed as an intensity plot as well as conventional plots extracted thereof. The THz amplitude values for no magnetic field are subtracted from the measured data to obtain these differential plots. In addition, the magnetic field pulse is shown.

Fig. 7
Fig. 7

Experimental and simulation results of the relative change in the THz transmittance for n-GaAs. Black values indicate no change of THz transmittance when the sample is exposed to the magnetic field. Red, yellow and white indicate absorption (here caused by cyclotron resonance), green denotes an increase of transmission. Grayed out areas are neglected due to poor SNR (included in the simulation to preserve comparability).

Fig. 8
Fig. 8

Experimental results of the relative change in the THz transmittance for p-Ge, n-InAs and n-InSb. Black values indicate no change of spectral THz intensity when the sample is exposed to the magnetic field. Red, yellow and white indicate absorption (here caused by cyclotron resonance), green denotes an increase of transmission. Grayed out areas are neglected due to poor SNR. The same scale is kept for comparison of all plots.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( E ( ω , B ) E ( ω , 0 ) ) 2 1.
P = 1 2 Re ( J E * ) = 1 2 Re ( σ x x ) E 0 2 .
m * = e B ω c
P = 1 4 σ 0 E 2 ( 1 1 + ( ω c ω ) 2 τ 2 + 1 1 + ( ω c + ω ) 2 τ 2 ) .

Metrics