Abstract

We demonstrate a novel laser oscillation scheme in an InAs / InP wire-like quantum dash gain medium. A short optical pulse excites carriers by two photon absorption which relax to the energy levels providing gain thereby enabling laser oscillations. The nonlinear dynamic interaction is analyzed and quantified using multi-color pump-probe measurements and shows a highly efficient nonlinear two photon excitation process which is larger by more than an order of magnitude compared to common quantum well and bulk gain media. The dynamic response of the nonlinearly induced laser line is characterized by spectrally resolved temporal response measurements, while changes incurring upon propagation in the stimulating short pulse itself are characterized by frequency resolved optical gating (FROG).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
    [CrossRef]
  2. A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photonics 2(4), 238–241 (2008).
    [CrossRef]
  3. J. Costello, “Extreme-ultraviolet sources: higher harmonics with plasmonics,” Nat. Photonics 5(11), 646–647 (2011).
    [CrossRef]
  4. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
    [CrossRef] [PubMed]
  5. W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
    [CrossRef]
  6. A. Capua, G. Eisenstein, and J. P. Reithmaier, “A nearly instantaneous gain response in quantum dash based optical amplifiers,” Appl. Phys. Lett. 97(13), 131108 (2010).
    [CrossRef]
  7. C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” Appl. Phys. Lett. 89(4), 042117 (2006).
    [CrossRef]
  8. C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu, “Low-threshold two-photon pumped ZnO nanowire lasers,” Opt. Express 17(10), 7893–7900 (2009).
    [CrossRef] [PubMed]
  9. S. Dayal and C. Burda, “Semiconductor quantum dots as two-photon sensitizers,” J. Am. Chem. Soc. 130(10), 2890–2891 (2008).
    [CrossRef] [PubMed]
  10. S. Schneider, P. Borri, W. Langbein, U. Woggon, J. Förstner, A. Knorr, R. L. Sellin, D. Ouyang, and D. Bimberg, “Self-induced transparency in InGaAs quantum dot waveguides,” Appl. Phys. Lett. 83(18), 3668–3670 (2003).
    [CrossRef]
  11. P. Aivaliotis, E. A. Zibik, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and N. Q. Vinh, “Two photon absorption in quantum dot-in-a-well infrared photodetectors,” Appl. Phys. Lett. 92(2), 023501 (2008).
    [CrossRef]
  12. A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, “Cross talk free multi channel processing of 10 Gbit/s data via four wave mixing in a 1550 nm InAs/InP quantum dash amplifier,” Opt. Express 16(23), 19072–19077 (2008).
    [CrossRef] [PubMed]
  13. P. Day, K. Nguyen, and R. Pachter, “Calculation of one- and two-Photon absorption spectra of thiolated gold nanoclusters using time-dependent density functional theory,” J. Chem. Theory Comput. 6(9), 2809–2821 (2010).
    [CrossRef]
  14. S. A. Khan, D. Senapati, T. Senapati, P. Bonifassi, Z. Fan, A. K. Singh, A. Neeley, G. Hill, and P. C. Ray, “Size dependent nonlinear optical properties of silver quantum clusters,” Chem. Phys. Lett. 512(1-3), 92–95 (2011).
    [CrossRef]
  15. H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
    [CrossRef]
  16. A. Capua, G. Eisenstein, and J. P. Reithmaier, “Ultrafast cross saturation dynamics in inhomogeneously broadened InAs/InP quantum dash optical amplifiers,” Appl. Phys. Lett. 98(10), 101108 (2011).
    [CrossRef]
  17. H. Ju, A. V. Uskov, R. Nötzel, Z. Li, J. Molina Vázquez, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Effects of two-photon absorption on carrier dynamics in quantum-dot optical amplifiers,” Appl. Phys. B 82(4), 615–620 (2006).
    [CrossRef]
  18. H. Dery and G. Eisenstein, “Self-consistent rate equations of self assembly quantum wire lasers,” IEEE J. Quantum Electron. 40(10), 1398–1409 (2004).
    [CrossRef]
  19. M. Kessler and E. P. Ippen, “Subpicosecond spectra gain dynamics in AlGaAs laser diodes,” Electron. Lett. 24(17), 1102–1104 (1988).
    [CrossRef]
  20. R. Trebino, Frequency-Resolved Optical Gating: The Measurement Of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2002), Chap. 16.
  21. A. Capua, A. Saal, O. Karni, G. Eisenstein, J. P. Reithmaier, and K. Yvind, “Complex characterization of short-pulse propagation through InAs/InP quantum-dash optical amplifiers: from the quasi-linear to the two-photon-dominated regime,” Opt. Express 20(1), 347–353 (2012).
    [CrossRef] [PubMed]
  22. D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10Gbit/s data,” Appl. Phys. Lett. 87(2), 021104 (2005).
    [CrossRef]

2012 (1)

2011 (4)

J. Costello, “Extreme-ultraviolet sources: higher harmonics with plasmonics,” Nat. Photonics 5(11), 646–647 (2011).
[CrossRef]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

S. A. Khan, D. Senapati, T. Senapati, P. Bonifassi, Z. Fan, A. K. Singh, A. Neeley, G. Hill, and P. C. Ray, “Size dependent nonlinear optical properties of silver quantum clusters,” Chem. Phys. Lett. 512(1-3), 92–95 (2011).
[CrossRef]

A. Capua, G. Eisenstein, and J. P. Reithmaier, “Ultrafast cross saturation dynamics in inhomogeneously broadened InAs/InP quantum dash optical amplifiers,” Appl. Phys. Lett. 98(10), 101108 (2011).
[CrossRef]

2010 (2)

A. Capua, G. Eisenstein, and J. P. Reithmaier, “A nearly instantaneous gain response in quantum dash based optical amplifiers,” Appl. Phys. Lett. 97(13), 131108 (2010).
[CrossRef]

P. Day, K. Nguyen, and R. Pachter, “Calculation of one- and two-Photon absorption spectra of thiolated gold nanoclusters using time-dependent density functional theory,” J. Chem. Theory Comput. 6(9), 2809–2821 (2010).
[CrossRef]

2009 (1)

2008 (4)

S. Dayal and C. Burda, “Semiconductor quantum dots as two-photon sensitizers,” J. Am. Chem. Soc. 130(10), 2890–2891 (2008).
[CrossRef] [PubMed]

A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photonics 2(4), 238–241 (2008).
[CrossRef]

P. Aivaliotis, E. A. Zibik, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and N. Q. Vinh, “Two photon absorption in quantum dot-in-a-well infrared photodetectors,” Appl. Phys. Lett. 92(2), 023501 (2008).
[CrossRef]

A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, “Cross talk free multi channel processing of 10 Gbit/s data via four wave mixing in a 1550 nm InAs/InP quantum dash amplifier,” Opt. Express 16(23), 19072–19077 (2008).
[CrossRef] [PubMed]

2006 (2)

H. Ju, A. V. Uskov, R. Nötzel, Z. Li, J. Molina Vázquez, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Effects of two-photon absorption on carrier dynamics in quantum-dot optical amplifiers,” Appl. Phys. B 82(4), 615–620 (2006).
[CrossRef]

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” Appl. Phys. Lett. 89(4), 042117 (2006).
[CrossRef]

2005 (1)

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10Gbit/s data,” Appl. Phys. Lett. 87(2), 021104 (2005).
[CrossRef]

2004 (2)

H. Dery and G. Eisenstein, “Self-consistent rate equations of self assembly quantum wire lasers,” IEEE J. Quantum Electron. 40(10), 1398–1409 (2004).
[CrossRef]

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[CrossRef]

2003 (1)

S. Schneider, P. Borri, W. Langbein, U. Woggon, J. Förstner, A. Knorr, R. L. Sellin, D. Ouyang, and D. Bimberg, “Self-induced transparency in InGaAs quantum dot waveguides,” Appl. Phys. Lett. 83(18), 3668–3670 (2003).
[CrossRef]

2002 (1)

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

1988 (1)

M. Kessler and E. P. Ippen, “Subpicosecond spectra gain dynamics in AlGaAs laser diodes,” Electron. Lett. 24(17), 1102–1104 (1988).
[CrossRef]

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Aivaliotis, P.

P. Aivaliotis, E. A. Zibik, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and N. Q. Vinh, “Two photon absorption in quantum dot-in-a-well infrared photodetectors,” Appl. Phys. Lett. 92(2), 023501 (2008).
[CrossRef]

Alizon, R.

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[CrossRef]

Bauer, C. A.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

Benisty, E.

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[CrossRef]

Bimberg, D.

S. Schneider, P. Borri, W. Langbein, U. Woggon, J. Förstner, A. Knorr, R. L. Sellin, D. Ouyang, and D. Bimberg, “Self-induced transparency in InGaAs quantum dot waveguides,” Appl. Phys. Lett. 83(18), 3668–3670 (2003).
[CrossRef]

Bonifassi, P.

S. A. Khan, D. Senapati, T. Senapati, P. Bonifassi, Z. Fan, A. K. Singh, A. Neeley, G. Hill, and P. C. Ray, “Size dependent nonlinear optical properties of silver quantum clusters,” Chem. Phys. Lett. 512(1-3), 92–95 (2011).
[CrossRef]

Borri, P.

S. Schneider, P. Borri, W. Langbein, U. Woggon, J. Förstner, A. Knorr, R. L. Sellin, D. Ouyang, and D. Bimberg, “Self-induced transparency in InGaAs quantum dot waveguides,” Appl. Phys. Lett. 83(18), 3668–3670 (2003).
[CrossRef]

Burda, C.

S. Dayal and C. Burda, “Semiconductor quantum dots as two-photon sensitizers,” J. Am. Chem. Soc. 130(10), 2890–2891 (2008).
[CrossRef] [PubMed]

Capua, A.

Chen, X.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

Cheng, H.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” Appl. Phys. Lett. 89(4), 042117 (2006).
[CrossRef]

Cockburn, J. W.

P. Aivaliotis, E. A. Zibik, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and N. Q. Vinh, “Two photon absorption in quantum dot-in-a-well infrared photodetectors,” Appl. Phys. Lett. 92(2), 023501 (2008).
[CrossRef]

Costello, J.

J. Costello, “Extreme-ultraviolet sources: higher harmonics with plasmonics,” Nat. Photonics 5(11), 646–647 (2011).
[CrossRef]

Day, P.

P. Day, K. Nguyen, and R. Pachter, “Calculation of one- and two-Photon absorption spectra of thiolated gold nanoclusters using time-dependent density functional theory,” J. Chem. Theory Comput. 6(9), 2809–2821 (2010).
[CrossRef]

Dayal, S.

S. Dayal and C. Burda, “Semiconductor quantum dots as two-photon sensitizers,” J. Am. Chem. Soc. 130(10), 2890–2891 (2008).
[CrossRef] [PubMed]

Deng, H.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” Appl. Phys. Lett. 89(4), 042117 (2006).
[CrossRef]

Deng, R.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

Dery, H.

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[CrossRef]

H. Dery and G. Eisenstein, “Self-consistent rate equations of self assembly quantum wire lasers,” IEEE J. Quantum Electron. 40(10), 1398–1409 (2004).
[CrossRef]

Deubert, S.

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10Gbit/s data,” Appl. Phys. Lett. 87(2), 021104 (2005).
[CrossRef]

Dong, Z. W.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” Appl. Phys. Lett. 89(4), 042117 (2006).
[CrossRef]

Dorren, H. J. S.

H. Ju, A. V. Uskov, R. Nötzel, Z. Li, J. Molina Vázquez, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Effects of two-photon absorption on carrier dynamics in quantum-dot optical amplifiers,” Appl. Phys. B 82(4), 615–620 (2006).
[CrossRef]

Eisenstein, G.

A. Capua, A. Saal, O. Karni, G. Eisenstein, J. P. Reithmaier, and K. Yvind, “Complex characterization of short-pulse propagation through InAs/InP quantum-dash optical amplifiers: from the quasi-linear to the two-photon-dominated regime,” Opt. Express 20(1), 347–353 (2012).
[CrossRef] [PubMed]

A. Capua, G. Eisenstein, and J. P. Reithmaier, “Ultrafast cross saturation dynamics in inhomogeneously broadened InAs/InP quantum dash optical amplifiers,” Appl. Phys. Lett. 98(10), 101108 (2011).
[CrossRef]

A. Capua, G. Eisenstein, and J. P. Reithmaier, “A nearly instantaneous gain response in quantum dash based optical amplifiers,” Appl. Phys. Lett. 97(13), 131108 (2010).
[CrossRef]

A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, “Cross talk free multi channel processing of 10 Gbit/s data via four wave mixing in a 1550 nm InAs/InP quantum dash amplifier,” Opt. Express 16(23), 19072–19077 (2008).
[CrossRef] [PubMed]

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10Gbit/s data,” Appl. Phys. Lett. 87(2), 021104 (2005).
[CrossRef]

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[CrossRef]

H. Dery and G. Eisenstein, “Self-consistent rate equations of self assembly quantum wire lasers,” IEEE J. Quantum Electron. 40(10), 1398–1409 (2004).
[CrossRef]

Epstein, A.

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[CrossRef]

Fan, Z.

S. A. Khan, D. Senapati, T. Senapati, P. Bonifassi, Z. Fan, A. K. Singh, A. Neeley, G. Hill, and P. C. Ray, “Size dependent nonlinear optical properties of silver quantum clusters,” Chem. Phys. Lett. 512(1-3), 92–95 (2011).
[CrossRef]

Finzi, D.

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10Gbit/s data,” Appl. Phys. Lett. 87(2), 021104 (2005).
[CrossRef]

Forchel, A.

A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, “Cross talk free multi channel processing of 10 Gbit/s data via four wave mixing in a 1550 nm InAs/InP quantum dash amplifier,” Opt. Express 16(23), 19072–19077 (2008).
[CrossRef] [PubMed]

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10Gbit/s data,” Appl. Phys. Lett. 87(2), 021104 (2005).
[CrossRef]

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[CrossRef]

Förstner, J.

S. Schneider, P. Borri, W. Langbein, U. Woggon, J. Förstner, A. Knorr, R. L. Sellin, D. Ouyang, and D. Bimberg, “Self-induced transparency in InGaAs quantum dot waveguides,” Appl. Phys. Lett. 83(18), 3668–3670 (2003).
[CrossRef]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Ginzburg, P.

A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photonics 2(4), 238–241 (2008).
[CrossRef]

Gold, D.

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[CrossRef]

Hadass, D.

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10Gbit/s data,” Appl. Phys. Lett. 87(2), 021104 (2005).
[CrossRef]

Hahm, J. I.

Han, Y.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

Hayat, A.

A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photonics 2(4), 238–241 (2008).
[CrossRef]

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Hill, G.

S. A. Khan, D. Senapati, T. Senapati, P. Bonifassi, Z. Fan, A. K. Singh, A. Neeley, G. Hill, and P. C. Ray, “Size dependent nonlinear optical properties of silver quantum clusters,” Chem. Phys. Lett. 512(1-3), 92–95 (2011).
[CrossRef]

Hopkinson, M.

P. Aivaliotis, E. A. Zibik, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and N. Q. Vinh, “Two photon absorption in quantum dot-in-a-well infrared photodetectors,” Appl. Phys. Lett. 92(2), 023501 (2008).
[CrossRef]

Ippen, E. P.

M. Kessler and E. P. Ippen, “Subpicosecond spectra gain dynamics in AlGaAs laser diodes,” Electron. Lett. 24(17), 1102–1104 (1988).
[CrossRef]

Ju, H.

H. Ju, A. V. Uskov, R. Nötzel, Z. Li, J. Molina Vázquez, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Effects of two-photon absorption on carrier dynamics in quantum-dot optical amplifiers,” Appl. Phys. B 82(4), 615–620 (2006).
[CrossRef]

Kaiser, W.

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10Gbit/s data,” Appl. Phys. Lett. 87(2), 021104 (2005).
[CrossRef]

Karni, O.

Kessler, M.

M. Kessler and E. P. Ippen, “Subpicosecond spectra gain dynamics in AlGaAs laser diodes,” Electron. Lett. 24(17), 1102–1104 (1988).
[CrossRef]

Khan, S. A.

S. A. Khan, D. Senapati, T. Senapati, P. Bonifassi, Z. Fan, A. K. Singh, A. Neeley, G. Hill, and P. C. Ray, “Size dependent nonlinear optical properties of silver quantum clusters,” Chem. Phys. Lett. 512(1-3), 92–95 (2011).
[CrossRef]

Khoe, G. D.

H. Ju, A. V. Uskov, R. Nötzel, Z. Li, J. Molina Vázquez, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Effects of two-photon absorption on carrier dynamics in quantum-dot optical amplifiers,” Appl. Phys. B 82(4), 615–620 (2006).
[CrossRef]

Knorr, A.

S. Schneider, P. Borri, W. Langbein, U. Woggon, J. Förstner, A. Knorr, R. L. Sellin, D. Ouyang, and D. Bimberg, “Self-induced transparency in InGaAs quantum dot waveguides,” Appl. Phys. Lett. 83(18), 3668–3670 (2003).
[CrossRef]

Kumar, N.

Langbein, W.

S. Schneider, P. Borri, W. Langbein, U. Woggon, J. Förstner, A. Knorr, R. L. Sellin, D. Ouyang, and D. Bimberg, “Self-induced transparency in InGaAs quantum dot waveguides,” Appl. Phys. Lett. 83(18), 3668–3670 (2003).
[CrossRef]

Lenstra, D.

H. Ju, A. V. Uskov, R. Nötzel, Z. Li, J. Molina Vázquez, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Effects of two-photon absorption on carrier dynamics in quantum-dot optical amplifiers,” Appl. Phys. B 82(4), 615–620 (2006).
[CrossRef]

Li, Z.

H. Ju, A. V. Uskov, R. Nötzel, Z. Li, J. Molina Vázquez, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Effects of two-photon absorption on carrier dynamics in quantum-dot optical amplifiers,” Appl. Phys. B 82(4), 615–620 (2006).
[CrossRef]

Liu, J.

Liu, X.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

Maimon, Y.

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10Gbit/s data,” Appl. Phys. Lett. 87(2), 021104 (2005).
[CrossRef]

Mangel, T.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

Marder, S. R.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

Meyer-Friedrichsen, T.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

Mikhelashvili, V.

A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, “Cross talk free multi channel processing of 10 Gbit/s data via four wave mixing in a 1550 nm InAs/InP quantum dash amplifier,” Opt. Express 16(23), 19072–19077 (2008).
[CrossRef] [PubMed]

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10Gbit/s data,” Appl. Phys. Lett. 87(2), 021104 (2005).
[CrossRef]

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[CrossRef]

Molina Vázquez, J.

H. Ju, A. V. Uskov, R. Nötzel, Z. Li, J. Molina Vázquez, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Effects of two-photon absorption on carrier dynamics in quantum-dot optical amplifiers,” Appl. Phys. B 82(4), 615–620 (2006).
[CrossRef]

Neeley, A.

S. A. Khan, D. Senapati, T. Senapati, P. Bonifassi, Z. Fan, A. K. Singh, A. Neeley, G. Hill, and P. C. Ray, “Size dependent nonlinear optical properties of silver quantum clusters,” Chem. Phys. Lett. 512(1-3), 92–95 (2011).
[CrossRef]

Nguyen, K.

P. Day, K. Nguyen, and R. Pachter, “Calculation of one- and two-Photon absorption spectra of thiolated gold nanoclusters using time-dependent density functional theory,” J. Chem. Theory Comput. 6(9), 2809–2821 (2010).
[CrossRef]

Nötzel, R.

H. Ju, A. V. Uskov, R. Nötzel, Z. Li, J. Molina Vázquez, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Effects of two-photon absorption on carrier dynamics in quantum-dot optical amplifiers,” Appl. Phys. B 82(4), 615–620 (2006).
[CrossRef]

O’Duill, S.

Orenstein, M.

A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photonics 2(4), 238–241 (2008).
[CrossRef]

Ouyang, D.

S. Schneider, P. Borri, W. Langbein, U. Woggon, J. Förstner, A. Knorr, R. L. Sellin, D. Ouyang, and D. Bimberg, “Self-induced transparency in InGaAs quantum dot waveguides,” Appl. Phys. Lett. 83(18), 3668–3670 (2003).
[CrossRef]

Pachter, R.

P. Day, K. Nguyen, and R. Pachter, “Calculation of one- and two-Photon absorption spectra of thiolated gold nanoclusters using time-dependent density functional theory,” J. Chem. Theory Comput. 6(9), 2809–2821 (2010).
[CrossRef]

Perry, J. W.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Pond, S. J. K.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

Qian, S. X.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” Appl. Phys. Lett. 89(4), 042117 (2006).
[CrossRef]

Ray, P. C.

S. A. Khan, D. Senapati, T. Senapati, P. Bonifassi, Z. Fan, A. K. Singh, A. Neeley, G. Hill, and P. C. Ray, “Size dependent nonlinear optical properties of silver quantum clusters,” Chem. Phys. Lett. 512(1-3), 92–95 (2011).
[CrossRef]

Reithmaier, J. P.

A. Capua, A. Saal, O. Karni, G. Eisenstein, J. P. Reithmaier, and K. Yvind, “Complex characterization of short-pulse propagation through InAs/InP quantum-dash optical amplifiers: from the quasi-linear to the two-photon-dominated regime,” Opt. Express 20(1), 347–353 (2012).
[CrossRef] [PubMed]

A. Capua, G. Eisenstein, and J. P. Reithmaier, “Ultrafast cross saturation dynamics in inhomogeneously broadened InAs/InP quantum dash optical amplifiers,” Appl. Phys. Lett. 98(10), 101108 (2011).
[CrossRef]

A. Capua, G. Eisenstein, and J. P. Reithmaier, “A nearly instantaneous gain response in quantum dash based optical amplifiers,” Appl. Phys. Lett. 97(13), 131108 (2010).
[CrossRef]

A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, “Cross talk free multi channel processing of 10 Gbit/s data via four wave mixing in a 1550 nm InAs/InP quantum dash amplifier,” Opt. Express 16(23), 19072–19077 (2008).
[CrossRef] [PubMed]

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10Gbit/s data,” Appl. Phys. Lett. 87(2), 021104 (2005).
[CrossRef]

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[CrossRef]

Saal, A.

Schneider, S.

S. Schneider, P. Borri, W. Langbein, U. Woggon, J. Förstner, A. Knorr, R. L. Sellin, D. Ouyang, and D. Bimberg, “Self-induced transparency in InGaAs quantum dot waveguides,” Appl. Phys. Lett. 83(18), 3668–3670 (2003).
[CrossRef]

Schwertberger, R.

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[CrossRef]

Sellin, R. L.

S. Schneider, P. Borri, W. Langbein, U. Woggon, J. Förstner, A. Knorr, R. L. Sellin, D. Ouyang, and D. Bimberg, “Self-induced transparency in InGaAs quantum dot waveguides,” Appl. Phys. Lett. 83(18), 3668–3670 (2003).
[CrossRef]

Senapati, D.

S. A. Khan, D. Senapati, T. Senapati, P. Bonifassi, Z. Fan, A. K. Singh, A. Neeley, G. Hill, and P. C. Ray, “Size dependent nonlinear optical properties of silver quantum clusters,” Chem. Phys. Lett. 512(1-3), 92–95 (2011).
[CrossRef]

Senapati, T.

S. A. Khan, D. Senapati, T. Senapati, P. Bonifassi, Z. Fan, A. K. Singh, A. Neeley, G. Hill, and P. C. Ray, “Size dependent nonlinear optical properties of silver quantum clusters,” Chem. Phys. Lett. 512(1-3), 92–95 (2011).
[CrossRef]

Singh, A. K.

S. A. Khan, D. Senapati, T. Senapati, P. Bonifassi, Z. Fan, A. K. Singh, A. Neeley, G. Hill, and P. C. Ray, “Size dependent nonlinear optical properties of silver quantum clusters,” Chem. Phys. Lett. 512(1-3), 92–95 (2011).
[CrossRef]

Somers, A.

A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, “Cross talk free multi channel processing of 10 Gbit/s data via four wave mixing in a 1550 nm InAs/InP quantum dash amplifier,” Opt. Express 16(23), 19072–19077 (2008).
[CrossRef] [PubMed]

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10Gbit/s data,” Appl. Phys. Lett. 87(2), 021104 (2005).
[CrossRef]

Stellacci, F.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

Uskov, A. V.

H. Ju, A. V. Uskov, R. Nötzel, Z. Li, J. Molina Vázquez, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Effects of two-photon absorption on carrier dynamics in quantum-dot optical amplifiers,” Appl. Phys. B 82(4), 615–620 (2006).
[CrossRef]

Vinh, N. Q.

P. Aivaliotis, E. A. Zibik, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and N. Q. Vinh, “Two photon absorption in quantum dot-in-a-well infrared photodetectors,” Appl. Phys. Lett. 92(2), 023501 (2008).
[CrossRef]

Wang, F.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

Wang, J.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

Wang, J. C.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” Appl. Phys. Lett. 89(4), 042117 (2006).
[CrossRef]

Wang, Q.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

Wang, Z. L.

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Wenseleers, W.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

Wilson, L. R.

P. Aivaliotis, E. A. Zibik, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and N. Q. Vinh, “Two photon absorption in quantum dot-in-a-well infrared photodetectors,” Appl. Phys. Lett. 92(2), 023501 (2008).
[CrossRef]

Woggon, U.

S. Schneider, P. Borri, W. Langbein, U. Woggon, J. Förstner, A. Knorr, R. L. Sellin, D. Ouyang, and D. Bimberg, “Self-induced transparency in InGaAs quantum dot waveguides,” Appl. Phys. Lett. 83(18), 3668–3670 (2003).
[CrossRef]

Xia, T.

Xu, J.

You, G. J.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” Appl. Phys. Lett. 89(4), 042117 (2006).
[CrossRef]

Yvind, K.

Zhang, C.

Zhang, C. F.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” Appl. Phys. Lett. 89(4), 042117 (2006).
[CrossRef]

Zhang, F.

Zhu, H.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

Zhu, R. Y.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” Appl. Phys. Lett. 89(4), 042117 (2006).
[CrossRef]

Zibik, E. A.

P. Aivaliotis, E. A. Zibik, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and N. Q. Vinh, “Two photon absorption in quantum dot-in-a-well infrared photodetectors,” Appl. Phys. Lett. 92(2), 023501 (2008).
[CrossRef]

Appl. Phys. B (1)

H. Ju, A. V. Uskov, R. Nötzel, Z. Li, J. Molina Vázquez, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Effects of two-photon absorption on carrier dynamics in quantum-dot optical amplifiers,” Appl. Phys. B 82(4), 615–620 (2006).
[CrossRef]

Appl. Phys. Lett. (6)

A. Capua, G. Eisenstein, and J. P. Reithmaier, “Ultrafast cross saturation dynamics in inhomogeneously broadened InAs/InP quantum dash optical amplifiers,” Appl. Phys. Lett. 98(10), 101108 (2011).
[CrossRef]

S. Schneider, P. Borri, W. Langbein, U. Woggon, J. Förstner, A. Knorr, R. L. Sellin, D. Ouyang, and D. Bimberg, “Self-induced transparency in InGaAs quantum dot waveguides,” Appl. Phys. Lett. 83(18), 3668–3670 (2003).
[CrossRef]

P. Aivaliotis, E. A. Zibik, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and N. Q. Vinh, “Two photon absorption in quantum dot-in-a-well infrared photodetectors,” Appl. Phys. Lett. 92(2), 023501 (2008).
[CrossRef]

A. Capua, G. Eisenstein, and J. P. Reithmaier, “A nearly instantaneous gain response in quantum dash based optical amplifiers,” Appl. Phys. Lett. 97(13), 131108 (2010).
[CrossRef]

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” Appl. Phys. Lett. 89(4), 042117 (2006).
[CrossRef]

D. Hadass, V. Mikhelashvili, G. Eisenstein, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel, D. Finzi, and Y. Maimon, “Time-resolved chirp in an InAs/InP quantum-dash optical amplifier operating with 10Gbit/s data,” Appl. Phys. Lett. 87(2), 021104 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

S. A. Khan, D. Senapati, T. Senapati, P. Bonifassi, Z. Fan, A. K. Singh, A. Neeley, G. Hill, and P. C. Ray, “Size dependent nonlinear optical properties of silver quantum clusters,” Chem. Phys. Lett. 512(1-3), 92–95 (2011).
[CrossRef]

Electron. Lett. (1)

M. Kessler and E. P. Ippen, “Subpicosecond spectra gain dynamics in AlGaAs laser diodes,” Electron. Lett. 24(17), 1102–1104 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Dery and G. Eisenstein, “Self-consistent rate equations of self assembly quantum wire lasers,” IEEE J. Quantum Electron. 40(10), 1398–1409 (2004).
[CrossRef]

J. Am. Chem. Soc. (1)

S. Dayal and C. Burda, “Semiconductor quantum dots as two-photon sensitizers,” J. Am. Chem. Soc. 130(10), 2890–2891 (2008).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[CrossRef]

J. Chem. Theory Comput. (1)

P. Day, K. Nguyen, and R. Pachter, “Calculation of one- and two-Photon absorption spectra of thiolated gold nanoclusters using time-dependent density functional theory,” J. Chem. Theory Comput. 6(9), 2809–2821 (2010).
[CrossRef]

J. Phys. Chem. B (1)

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

Nat. Mater. (1)

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[CrossRef] [PubMed]

Nat. Photonics (2)

A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photonics 2(4), 238–241 (2008).
[CrossRef]

J. Costello, “Extreme-ultraviolet sources: higher harmonics with plasmonics,” Nat. Photonics 5(11), 646–647 (2011).
[CrossRef]

Opt. Express (3)

Phys. Rev. Lett. (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Other (1)

R. Trebino, Frequency-Resolved Optical Gating: The Measurement Of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2002), Chap. 16.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spectroscopic data. (a) Bias dependent amplified spontaneous emission spectra. (b) Multi-wavelength pump-probe response at a bias of 150 mA; pump at 1550 nm and probe at 1600 nm.

Fig. 2
Fig. 2

Optically triggered laser oscillations. (a) Experimental schematic. (b) Conceptual description of band diagram together with the sequence of excitation and emission processes. (c) Output spectrum with no optical injection. (d) Output spectrum with optical injection. (e) Laser oscillation threshold dependence on optical pump wavelength. The oscillating wavelength, 1570 nm, is marked artificially by a red line.

Fig. 3
Fig. 3

Spectrally-resolved temporal response. (a) Experimental schematic. (b) Measured oscillating signal with the pump spectral location marked in red artificially. (c) Measured spectrally-resolved temporal response of the oscillating line.

Fig. 4
Fig. 4

X-FROG response. (a) Experimental schematic. The pump pulse is filtered using a long-pass filter. (b) Amplitude and instantaneous frequency-shift of the input pulse. (c) Amplitude and instantaneous frequency-shift of the high energy pulse with the amplitude of the test case pulse enlarged artificially for clarity. (d) Input and output average spectra of the high energy pulse.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dS dz = Γ L gS Γ NL β S 2
β | k μ ik e ^ 1 μ kf e ^ 2 E k E 1 +i Γ k + k μ ik e ^ 2 μ kf e ^ 1 E k E 2 +i Γ k | 2 .

Metrics