Abstract

We present and numerically characterize a closed-form multi-core holey fiber based plasmonic sensor. The coupling properties of the specific modes are investigated comprehensively by the finite element method. It is found that not only phase matching but also loss matching plays a key role in the coupling process between the fundamental mode and plasmonic mode. The coupling transforms from incomplete coupling to complete coupling with increasing analyte RI. An average sensitivity of 2929.39nm/RIU in the sensing range 1.33-1.42, and 9231.27nm/RIU in 1.43-1.53 with high linearity is obtained. The dynamic sensing range is the largest among the reported holey fiber based plasmonic sensors, to the best of our knowledge.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
    [CrossRef]
  2. B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 979761 (2009).
    [CrossRef]
  3. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  4. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
    [CrossRef] [PubMed]
  5. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured optical fiber based surface plasmon resonance sensors,” J. Opt. Soc. Am. B 24(6), 1423–1429 (2007).
    [CrossRef]
  6. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16(12), 8427–8432 (2008).
    [CrossRef] [PubMed]
  7. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15(24), 16270–16278 (2007).
    [CrossRef] [PubMed]
  8. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
    [CrossRef]
  9. H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
    [CrossRef] [PubMed]
  10. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
    [CrossRef] [PubMed]
  11. X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
    [CrossRef]
  12. Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284(18), 4161–4166 (2011).
    [CrossRef]
  13. K. Mukasa, K. Imamura, Y. Tsuchida, and R. Sugizaki, “Multi-core fibers for large capacity SDM,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2011), paper OWJ1.
  14. M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
    [CrossRef]
  15. N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, and D. V. Vysotsky, “Diffraction modeling of the multicore fiber amplifier,” J. Lightwave Technol. 25(10), 3072–3077 (2007).
    [CrossRef]
  16. J. F. Clément, D. Bacquet, A. Kudlinski, G. Bouwmans, O. Soppera, J. C. Garreau, and P. Szriftgiser, “Multicore fiber for cold-atomic cloud monitoring,” Opt. Express 19(23), 22936–22941 (2011).
    [CrossRef] [PubMed]
  17. A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express 19(4), 3799–3808 (2011).
    [CrossRef] [PubMed]
  18. M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
    [CrossRef]
  19. J. Zeng and D. Liang, “Application of fiber optic surface plasmon resonance sensor for measuring liquid refractive index,” J. Intell. Mater. Syst. Struct. 17(8-9), 787–791 (2006).
    [CrossRef]
  20. Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Opt. Express 16(3), 1915–1922 (2008).
    [CrossRef] [PubMed]
  21. F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Avoided crossings in photonic crystal fibers,” Opt. Express 19(14), 13578–13589 (2011).
    [CrossRef] [PubMed]
  22. G. Renversez, P. Boyer, and A. Sagrini, “Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling,” Opt. Express 14(12), 5682–5687 (2006).
    [CrossRef] [PubMed]
  23. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
    [CrossRef]
  24. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [CrossRef] [PubMed]
  25. H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. St. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19(9), 8200–8207 (2011).
    [CrossRef] [PubMed]
  26. B. Sun, M. Y. Chen, Y. K. Zhang, J. C. Yang, J. Q. Yao, and H. X. Cui, “Microstructured-core photonic-crystal fiber for ultra-sensitive refractive index sensing,” Opt. Express 19(5), 4091–4100 (2011).
    [CrossRef] [PubMed]
  27. G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
    [CrossRef] [PubMed]
  28. M. Erdmanis, D. Viegas, M. Hautakorpi, S. Novotny, J. L. Santos, and H. Ludvigsen, “Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H-shaped optical fiber,” Opt. Express 19(15), 13980–13988 (2011).
    [CrossRef] [PubMed]
  29. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [CrossRef] [PubMed]
  30. W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
    [CrossRef] [PubMed]
  31. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
    [CrossRef] [PubMed]
  32. B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fiber laser,” Appl. Phys. B 105(2), 213–217 (2011).
    [CrossRef]
  33. B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
    [CrossRef]

2011 (9)

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284(18), 4161–4166 (2011).
[CrossRef]

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fiber laser,” Appl. Phys. B 105(2), 213–217 (2011).
[CrossRef]

A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express 19(4), 3799–3808 (2011).
[CrossRef] [PubMed]

B. Sun, M. Y. Chen, Y. K. Zhang, J. C. Yang, J. Q. Yao, and H. X. Cui, “Microstructured-core photonic-crystal fiber for ultra-sensitive refractive index sensing,” Opt. Express 19(5), 4091–4100 (2011).
[CrossRef] [PubMed]

H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. St. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19(9), 8200–8207 (2011).
[CrossRef] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[CrossRef] [PubMed]

F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Avoided crossings in photonic crystal fibers,” Opt. Express 19(14), 13578–13589 (2011).
[CrossRef] [PubMed]

M. Erdmanis, D. Viegas, M. Hautakorpi, S. Novotny, J. L. Santos, and H. Ludvigsen, “Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H-shaped optical fiber,” Opt. Express 19(15), 13980–13988 (2011).
[CrossRef] [PubMed]

J. F. Clément, D. Bacquet, A. Kudlinski, G. Bouwmans, O. Soppera, J. C. Garreau, and P. Szriftgiser, “Multicore fiber for cold-atomic cloud monitoring,” Opt. Express 19(23), 22936–22941 (2011).
[CrossRef] [PubMed]

2010 (4)

G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
[CrossRef] [PubMed]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[CrossRef] [PubMed]

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
[CrossRef]

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[CrossRef]

2009 (4)

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[CrossRef]

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 979761 (2009).
[CrossRef]

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
[CrossRef] [PubMed]

B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
[CrossRef]

2008 (5)

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[CrossRef]

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Opt. Express 16(3), 1915–1922 (2008).
[CrossRef] [PubMed]

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16(12), 8427–8432 (2008).
[CrossRef] [PubMed]

2007 (4)

2006 (4)

2005 (1)

2000 (1)

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Ahmed, M. A.

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[CrossRef]

Albert, J.

Bacquet, D.

Banerji, S.

Bang, O.

Barthélémy, A.

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fiber laser,” Appl. Phys. B 105(2), 213–217 (2011).
[CrossRef]

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[CrossRef]

Bennion, I.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Bian, B.

Blanchard, P. M.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Booksh, K. S.

Bouwmans, G.

Boyer, P.

Burnett, J. G.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Chen, M. Y.

Clément, J. F.

Cox, F. M.

Cui, H. X.

Desfarges-Berthelemot, A.

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fiber laser,” Appl. Phys. B 105(2), 213–217 (2011).
[CrossRef]

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[CrossRef]

Eggleton, B. J.

Elkin, N. N.

Erdmanis, M.

Fan, X.

Gander, M. J.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Garreau, J. C.

Graf, T.

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[CrossRef]

Greenaway, A. H.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Gupta, B. D.

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 979761 (2009).
[CrossRef]

Hassani, A.

Hautakorpi, M.

Jansen, F.

Jauregui, C.

Joly, N.

Joly, N. Y.

Jones, J. D. C.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Kermene, V.

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fiber laser,” Appl. Phys. B 105(2), 213–217 (2011).
[CrossRef]

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[CrossRef]

Kim, Y. C.

Koshiba, M.

Kudlinski, A.

Kuhlmey, B. T.

Large, M. C. J.

Lee, B.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[CrossRef]

Lee, H. W.

Leviatan, Y.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
[CrossRef]

Li, C. M.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
[CrossRef]

Liang, D.

J. Zeng and D. Liang, “Application of fiber optic surface plasmon resonance sensor for measuring liquid refractive index,” J. Intell. Mater. Syst. Struct. 17(8-9), 787–791 (2006).
[CrossRef]

Limpert, J.

Liu, D.

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284(18), 4161–4166 (2011).
[CrossRef]

Liu, H.

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284(18), 4161–4166 (2011).
[CrossRef]

Lu, J.

Ludvigsen, H.

MacPherson, W. N.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Mattinen, M.

McBride, R.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

McCosker, R.

Nagasaki, A.

Napartovich, A. P.

Novotny, S.

Pagnoux, D.

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fiber laser,” Appl. Phys. B 105(2), 213–217 (2011).
[CrossRef]

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[CrossRef]

Pan, S. S.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
[CrossRef]

Park, J.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[CrossRef]

Peng, W.

Popp, A.

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[CrossRef]

Poulton, C. G.

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Renversez, G.

Roh, S.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[CrossRef]

Russell, P. St. J.

Russell, R. F.

Sagrini, A.

Saitoh, K.

Santos, J. L.

Scharrer, M.

Schmidt, M. A.

Sempere, L. N. P.

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Sempere, L. P.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[CrossRef]

Shalaby, B. M.

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fiber laser,” Appl. Phys. B 105(2), 213–217 (2011).
[CrossRef]

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[CrossRef]

Shevchenko, Y. Y.

Shi, Y.

Shum, P.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
[CrossRef]

Skorobogatiy, M.

Soppera, O.

Stutzki, F.

Sun, B.

Szriftgiser, P.

Town, G. E.

Troshchieva, V. N.

Tünnermann, A.

Tyagi, H.

Tyagi, H. K.

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[CrossRef] [PubMed]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[CrossRef] [PubMed]

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[CrossRef]

Uebel, P.

Verma, R. K.

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 979761 (2009).
[CrossRef]

Viegas, D.

Voss, A.

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[CrossRef]

Vysotsky, D. V.

Wang, R.

White, I. M.

Wu, D. K. C.

Xia, L.

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284(18), 4161–4166 (2011).
[CrossRef]

Yan, M.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
[CrossRef]

Yang, J. C.

Yao, J. Q.

Yu, X.

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284(18), 4161–4166 (2011).
[CrossRef]

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
[CrossRef]

Yuan, W.

Zeng, J.

J. Zeng and D. Liang, “Application of fiber optic surface plasmon resonance sensor for measuring liquid refractive index,” J. Intell. Mater. Syst. Struct. 17(8-9), 787–791 (2006).
[CrossRef]

Zhang, L.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Zhang, X.

Zhang, Y.

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284(18), 4161–4166 (2011).
[CrossRef]

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284(18), 4161–4166 (2011).
[CrossRef]

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
[CrossRef]

Zhang, Y. K.

Zhang, Z.

Zhou, C.

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284(18), 4161–4166 (2011).
[CrossRef]

Appl. Phys. B (2)

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fiber laser,” Appl. Phys. B 105(2), 213–217 (2011).
[CrossRef]

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[CrossRef]

Electron. Lett. (1)

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

J. Intell. Mater. Syst. Struct. (1)

J. Zeng and D. Liang, “Application of fiber optic surface plasmon resonance sensor for measuring liquid refractive index,” J. Intell. Mater. Syst. Struct. 17(8-9), 787–791 (2006).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. (1)

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Sens. (1)

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 979761 (2009).
[CrossRef]

Opt. Commun. (1)

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284(18), 4161–4166 (2011).
[CrossRef]

Opt. Express (13)

X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15(24), 16270–16278 (2007).
[CrossRef] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Opt. Express 16(3), 1915–1922 (2008).
[CrossRef] [PubMed]

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16(12), 8427–8432 (2008).
[CrossRef] [PubMed]

G. Renversez, P. Boyer, and A. Sagrini, “Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling,” Opt. Express 14(12), 5682–5687 (2006).
[CrossRef] [PubMed]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
[CrossRef] [PubMed]

A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express 19(4), 3799–3808 (2011).
[CrossRef] [PubMed]

B. Sun, M. Y. Chen, Y. K. Zhang, J. C. Yang, J. Q. Yao, and H. X. Cui, “Microstructured-core photonic-crystal fiber for ultra-sensitive refractive index sensing,” Opt. Express 19(5), 4091–4100 (2011).
[CrossRef] [PubMed]

H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. St. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19(9), 8200–8207 (2011).
[CrossRef] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[CrossRef] [PubMed]

F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Avoided crossings in photonic crystal fibers,” Opt. Express 19(14), 13578–13589 (2011).
[CrossRef] [PubMed]

M. Erdmanis, D. Viegas, M. Hautakorpi, S. Novotny, J. L. Santos, and H. Ludvigsen, “Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H-shaped optical fiber,” Opt. Express 19(15), 13980–13988 (2011).
[CrossRef] [PubMed]

J. F. Clément, D. Bacquet, A. Kudlinski, G. Bouwmans, O. Soppera, J. C. Garreau, and P. Szriftgiser, “Multicore fiber for cold-atomic cloud monitoring,” Opt. Express 19(23), 22936–22941 (2011).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. B (1)

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Other (1)

K. Mukasa, K. Imamura, Y. Tsuchida, and R. Sugizaki, “Multi-core fibers for large capacity SDM,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2011), paper OWJ1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Cross section of the index-guiding MCHF-SPR sensor with six identical cores of homogenuous material index. (b) FEM mesh and boundary conditions for computation.

Fig. 2
Fig. 2

Calculated electric field distributions and effective refractive indices of three guided-modes that can excite and resonant with plasmonic modes. The arrows (both white and blue) represent the direction of the electric field. Calculated for dc = 0.8Λ, d = 0.5Λ, t = 40nm, na = 1.43, λ = 500nm.

Fig. 3
Fig. 3

Wavelength dependence of the real parts of the effective indices and modal loss of s1 mode (Red), s2 mode (Purple), and fund. mode (Blue) of the MCHF-SPR sensor design. The solid green lines represent the dispersion relations of SPP modes with specific mode orders excited on the interface between the metal and analyte. The loss spectra of the s1 mode are magnified by a factor of 10 for clarity. Insets are mode fields of the specific SPP modes (1st-order, 3rd-order and 5th-order) and supermodes at resonance ((a) for s1 mode, (b) for s2 mode and (c) for fund. mode). (I) and (II) for lower RI na = 1.43 and 1.44, (III) for higher RI na = 1.47. (IV): Illustration of incomplete coupling between fund. mode and 1st-order SPP mode for na = 1.47.

Fig. 4
Fig. 4

Wavelength dependence of the real part (a) and modal loss (b) when a complete coupling happens. Dashed curves represent the dispersion relations of fund. mode and 1st-order SPP mode respectively without coupling at all. The insets are electric field distribution of coupled modes at specific wavelengths. The analyte RI na equals to 1.50.

Fig. 5
Fig. 5

Real part (a) and loss (b) as a function of wavelength when loss matching condition is satisfied and complete coupling happens. The analyte RI na varies from 1.48 to 1.53.

Fig. 6
Fig. 6

Imaginary parts of effective indices of the fund. mode and 1st-order SPP mode for three analyte RI, na = 1.465, 1.475 and 1.485. Insets are electric field distributions of the fund. mode at the resonant wavelengths.

Fig. 7
Fig. 7

Linear fitting lines of the fund. mode resonant wavelength versus analyte RI, (a) for lower analyte RI of 1.33-1.42 and (b) for higher analyte RI of 1.43-1.53. Simulated parameters: dc = 0.8Λ, d = 0.5Λ, t = 40nm.

Fig. 8
Fig. 8

Dependence of the fund. mode peak loss (Red, Logarithm coordinates), 1st-order SPP dip loss (Blue, Logarithm coordinates), and FWHM (Green) on the analyte RI. The operation wavelength is 400-1850nm.

Tables (2)

Tables Icon

Table 1 Summary of Resonant Characteristics of the s1, s2 and Fund. Mode

Tables Icon

Table 2 Comparison of Various Fiber-SPR Sensor Performances

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ l (nm)=2929.39n3414.69,1.33 n a 1.42 λ h (nm)=9231.27n12375.23,1.43 n a 1.53

Metrics