Abstract

We demonstrate a method for broadband laser pulse characterization based on a spectrally resolved cross-correlation with a narrowband flat-top gate pulse. Excellent phase-matching by collinear excitation in a microscope focus is exploited by degenerate four-wave mixing in a microscope slide. Direct group delay extraction of an octave spanning spectrum which is generated in a highly nonlinear fiber allows for spectral phase retrieval. The validity of the technique is supported by the comparison with an independent second-harmonic fringe-resolved autocorrelation measurement for an 11 fs laser pulse.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Armstrong, “Measurement of picosecond laser pulse width,” Appl. Phys. Lett. 10, 16–18 (1967).
    [CrossRef]
  2. J. C. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, “Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,”, Appl. Opt. 24, 1270–1282 (1985).
    [CrossRef] [PubMed]
  3. E. B. Treacy, “Measurement and interpretation of dynamic spectrograms of picosecond light pulses,” J. Appl. Phys. 42, 3848–3858 (1971).
    [CrossRef]
  4. J. L. A. Chilla and O. E. Martinez, “Direct determination of the amplitude and the phase of femtosecond light pulses,” Opt. Lett. 16, 39–41 (1991).
    [CrossRef] [PubMed]
  5. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993).
    [CrossRef] [PubMed]
  6. I. Amat-Roldn, I. G. Cormack, P. Loza-Alvarez, and D. Artigas, “Measurement of electric field by interferometric spectral trace observation,” Opt. Lett. 30, 1063–1065, (2005).
    [CrossRef]
  7. C. X. Yu, M. Margalit, E. P. Ippen, and H. A. Haus, “Direct measurement of self-phase shift due to fiber nonlinearity” Opt. Lett. 23, 679–681, (1998).
    [CrossRef]
  8. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, 2000).
  9. S. Linden, H. Giessen, and J. Kuhl, “XFROG - a new method for amplitude and phase characterization of weak ultrashort pulses” Phys. Status Solidi B 206, 119–124 (1998).
    [CrossRef]
  10. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. OShea, A. P. Shreenath, and R. Trebino, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
    [CrossRef]
  11. P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Biomed. Opt. 14, 014002 (2009).
    [CrossRef] [PubMed]
  12. S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B,  110, 5196–5204, (2009).
    [CrossRef]
  13. R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett. 35, 3282–3284 (2010).
    [CrossRef] [PubMed]
  14. W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-degenerate four-wave-mixing microscopy,” Nano Lett. 9, 2423–2426, (2009).
    [CrossRef] [PubMed]
  15. A. Sell, G. Krauss, R. Scheu, R. Huber, Rupert, and A. Leitenstorfer, “8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation.” Opt. Express 17, 1070–1077 (2009).
    [CrossRef] [PubMed]
  16. F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leiternstorfer, “Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er:fiber laser,” Opt. Lett. 32, 3504–3506 (2007).
    [CrossRef] [PubMed]
  17. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse secondharmonic generation with longitudinally non-uniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17, 304–318 (2000).
    [CrossRef]
  18. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nature Photon. 4, 33–36, (2010).
    [CrossRef]

2010 (2)

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nature Photon. 4, 33–36, (2010).
[CrossRef]

R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett. 35, 3282–3284 (2010).
[CrossRef] [PubMed]

2009 (4)

A. Sell, G. Krauss, R. Scheu, R. Huber, Rupert, and A. Leitenstorfer, “8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation.” Opt. Express 17, 1070–1077 (2009).
[CrossRef] [PubMed]

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Biomed. Opt. 14, 014002 (2009).
[CrossRef] [PubMed]

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B,  110, 5196–5204, (2009).
[CrossRef]

W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-degenerate four-wave-mixing microscopy,” Nano Lett. 9, 2423–2426, (2009).
[CrossRef] [PubMed]

2007 (1)

2005 (1)

2002 (1)

2000 (1)

1998 (2)

S. Linden, H. Giessen, and J. Kuhl, “XFROG - a new method for amplitude and phase characterization of weak ultrashort pulses” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

C. X. Yu, M. Margalit, E. P. Ippen, and H. A. Haus, “Direct measurement of self-phase shift due to fiber nonlinearity” Opt. Lett. 23, 679–681, (1998).
[CrossRef]

1993 (1)

1991 (1)

1985 (1)

1971 (1)

E. B. Treacy, “Measurement and interpretation of dynamic spectrograms of picosecond light pulses,” J. Appl. Phys. 42, 3848–3858 (1971).
[CrossRef]

1967 (1)

J. A. Armstrong, “Measurement of picosecond laser pulse width,” Appl. Phys. Lett. 10, 16–18 (1967).
[CrossRef]

Adler, F.

Amat-Roldn, I.

Andegeko, Y.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Biomed. Opt. 14, 014002 (2009).
[CrossRef] [PubMed]

Arbore, M. A.

Armstrong, J. A.

J. A. Armstrong, “Measurement of picosecond laser pulse width,” Appl. Phys. Lett. 10, 16–18 (1967).
[CrossRef]

Artigas, D.

Caster, A. G.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B,  110, 5196–5204, (2009).
[CrossRef]

Chilla, J. L. A.

Cormack, I. G.

Dantus, M.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Biomed. Opt. 14, 014002 (2009).
[CrossRef] [PubMed]

Diels, J. C.

Eggert, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nature Photon. 4, 33–36, (2010).
[CrossRef]

Fejer, M. M.

Fermann, M.

Fontaine, J. J.

Galvanauskas, A.

Giessen, H.

S. Linden, H. Giessen, and J. Kuhl, “XFROG - a new method for amplitude and phase characterization of weak ultrashort pulses” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

Gu, X.

Hanke, T.

R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett. 35, 3282–3284 (2010).
[CrossRef] [PubMed]

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nature Photon. 4, 33–36, (2010).
[CrossRef]

Harter, D.

Haus, H. A.

Holtom, G. R.

W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-degenerate four-wave-mixing microscopy,” Nano Lett. 9, 2423–2426, (2009).
[CrossRef] [PubMed]

Huber, R.

Imeshev, G.

Ippen, E. P.

Kane, D. J.

Kimmel, M.

Krauss, G.

Kuhl, J.

S. Linden, H. Giessen, and J. Kuhl, “XFROG - a new method for amplitude and phase characterization of weak ultrashort pulses” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

Leitenstorfer, A.

Leiternstorfer, A.

Leone, S. R.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B,  110, 5196–5204, (2009).
[CrossRef]

Lim, S. H.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B,  110, 5196–5204, (2009).
[CrossRef]

Linden, S.

S. Linden, H. Giessen, and J. Kuhl, “XFROG - a new method for amplitude and phase characterization of weak ultrashort pulses” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

Lohss, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nature Photon. 4, 33–36, (2010).
[CrossRef]

Lovozoy, V. V.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Biomed. Opt. 14, 014002 (2009).
[CrossRef] [PubMed]

Loza-Alvarez, P.

Lu, S.

W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-degenerate four-wave-mixing microscopy,” Nano Lett. 9, 2423–2426, (2009).
[CrossRef] [PubMed]

Margalit, M.

Martinez, O. E.

McMichael, I. C.

Min, W.

W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-degenerate four-wave-mixing microscopy,” Nano Lett. 9, 2423–2426, (2009).
[CrossRef] [PubMed]

Nicolet, O.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B,  110, 5196–5204, (2009).
[CrossRef]

OShea, P.

Pestov, D.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Biomed. Opt. 14, 014002 (2009).
[CrossRef] [PubMed]

Rueckel, M.

W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-degenerate four-wave-mixing microscopy,” Nano Lett. 9, 2423–2426, (2009).
[CrossRef] [PubMed]

Rupert,

Scheu, R.

Sell, A.

Selm, R.

Shreenath, A. P.

Simoni, F.

Sotier, F.

Treacy, E. B.

E. B. Treacy, “Measurement and interpretation of dynamic spectrograms of picosecond light pulses,” J. Appl. Phys. 42, 3848–3858 (1971).
[CrossRef]

Trebino, R.

Winterhalder, M.

Xi, P.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Biomed. Opt. 14, 014002 (2009).
[CrossRef] [PubMed]

Xie, X. S.

W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-degenerate four-wave-mixing microscopy,” Nano Lett. 9, 2423–2426, (2009).
[CrossRef] [PubMed]

Xu, L.

Yu, C. X.

Zeek, E.

Zumbusch, A.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. A. Armstrong, “Measurement of picosecond laser pulse width,” Appl. Phys. Lett. 10, 16–18 (1967).
[CrossRef]

J. Appl. Phys. (1)

E. B. Treacy, “Measurement and interpretation of dynamic spectrograms of picosecond light pulses,” J. Appl. Phys. 42, 3848–3858 (1971).
[CrossRef]

J. Biomed. Opt. (1)

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Biomed. Opt. 14, 014002 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B,  110, 5196–5204, (2009).
[CrossRef]

Nano Lett. (1)

W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-degenerate four-wave-mixing microscopy,” Nano Lett. 9, 2423–2426, (2009).
[CrossRef] [PubMed]

Nature Photon. (1)

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nature Photon. 4, 33–36, (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (7)

R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett. 35, 3282–3284 (2010).
[CrossRef] [PubMed]

C. X. Yu, M. Margalit, E. P. Ippen, and H. A. Haus, “Direct measurement of self-phase shift due to fiber nonlinearity” Opt. Lett. 23, 679–681, (1998).
[CrossRef]

J. L. A. Chilla and O. E. Martinez, “Direct determination of the amplitude and the phase of femtosecond light pulses,” Opt. Lett. 16, 39–41 (1991).
[CrossRef] [PubMed]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. OShea, A. P. Shreenath, and R. Trebino, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
[CrossRef]

I. Amat-Roldn, I. G. Cormack, P. Loza-Alvarez, and D. Artigas, “Measurement of electric field by interferometric spectral trace observation,” Opt. Lett. 30, 1063–1065, (2005).
[CrossRef]

F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leiternstorfer, “Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er:fiber laser,” Opt. Lett. 32, 3504–3506 (2007).
[CrossRef] [PubMed]

D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

S. Linden, H. Giessen, and J. Kuhl, “XFROG - a new method for amplitude and phase characterization of weak ultrashort pulses” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

Other (1)

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Frequency conversion diagram of the degenerate FWM process, (b) Schematic spectrograms of the continuum pulse Ic(t,ω), the gate pulse Ig(t,ω) and the FWM signal IFWM(t,τ,ω), (c) Schematic spectrogram IXFROG(τ,ω) of the cross-correlation with indicated tgd(ω) curve.

Fig. 2
Fig. 2

(a) Spectrum of gate pulse with a bandwidth of 0.6 nm, (b) Temporal shape of gate pulse intensity envelope with a duration of 3 ps, measured by cross-correlation with the ultrashort continuum pulse using sum-frequency generation in a thin LiNbO3 crystal, the time-bandwidth product amounts to 0.9 and indicates a bandwidth-limited flat-top pulse, (c) Experimental setup: D; delay-line, C; beam combiner, T; reflective telescope, O1/O2; Focussing and collecting objective, χ(3); susceptibility of microscope slide, F; filter, P; UVFS equilateral prism, C; CCD camera.

Fig. 3
Fig. 3

(a) Measured XFROG spectrogram with a CCD camera exposure time of 1 ms and time delay steps of 2 fs, (b) Reference cross-correlation, section at 574 nm indicated by vertical line in (a) (corresponds to 1200 nm in the continuum), (c) Retrieved laser spectrum Ec(ω) by averaging over time delay τ, (d) Retrieved group delay tgd with a zoomed inset which indicates a temporal error of 2 fs.

Fig. 4
Fig. 4

(a) Retrieved intensity and phase spectra as well as the intensity spectrum measured by a linear spectrometer, (b) The retrieved temporal intensity envelope and phase show a pulse duration of 11.2 fs.

Fig. 5
Fig. 5

Line: Calculated second-harmonic fringe-resolved autocorrelation based on the XFROG retrieved spectrum and phase, dots: Measured second-harmonic fringe-resolved autocorrelation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E FWM ( t , τ ) = ε 0 χ ( 3 ) E c * ( t ) E g 2 ( t τ )
I XFROG ( τ , ω ) | E c * ( t ) E g 2 ( t τ ) e i ω t d t | 2 .
ϕ ( ω ) = ϕ ( ω 0 ) + ω 0 ω t g d ( ω ) d ω

Metrics