Abstract

This paper presents an improved excimer laser micromachining method for fabricating arrayed microstructures with a predesigned surface profile. The proposed method is developed from a conventional biaxial laser dragging method, but numerical analysis and optimal pattern design on the contour mask are introduced so that the machined surface profiles can be well controlled and matched to the designed profiles. To demonstrate the capability of this new approach, an array of aspheric microlenses that have analog surfaces for minimizing the focal spot sizes of the lenses is designed and fabricated. An array of 10×10 microlenses with an aperture size of 100 μm and a designed aspheric profile are obtained experimentally. The machined surface profiles are closely matched to their designed ones, with a profile deviation of less than 1 μm. Furthermore, the machined surfaces are smooth, with an average surface roughness of around 2 nm. Optical measurements on these machined aspheric microlenses show minimized focal spot sizes approaching their optical diffraction limits.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Behrmann and M. T. Duignan, “Excimer laser micromachining for rapid fabrication of diffractive optical elements,” Appl. Opt. 36(20), 4666–4674 (1997).
    [CrossRef] [PubMed]
  2. M. C. Gower, “Industrial applications of laser micromachining,” Opt. Express 7(2), 56–67 (2000).
    [CrossRef] [PubMed]
  3. E. C. Harvey, P. T. Rumsby, M. C. Gower, S. Mihailov, and D. Thomas, “Excimer lasers for micromachining,” Microeng. Opt. 7, 1–4 (1994).
  4. J. H. Brannon, “Excimer-laser ablation and etching,” IEEE Circuits Devices Mag. 6(5), 18–24 (1990).
    [CrossRef]
  5. P. E. Dyer and J. Sidhu, “Excimer laser ablation and thermal coupling efficiency to polymer films,” J. Appl. Phys. 57(4), 1420–1422 (1985).
    [CrossRef]
  6. C. H. Tien, Y. E. Chien, Y. Chiu, and H. D. Shieh, “Microlens array fabricated by excimer laser micromachining with gray-tone photolithography,” Jpn. J. Appl. Phys. 42(Part 1, No. 3), 1280–1283 (2003).
    [CrossRef]
  7. K. Zimmer, A. Braun, and F. Bigl, “Combination of different processing methods for the fabrication of 3D polymer structures by excimer laser machining,” Appl. Surf. Sci. 154–155, 601–604 (2000).
    [CrossRef]
  8. H. Hocheng and K. Y. Wang, “Analysis and fabrication of minifeature lamp lens by excimer laser micromachining,” Appl. Opt. 46(29), 7184–7189 (2007).
    [CrossRef] [PubMed]
  9. Z. D. Popovic, R. A. Sprague, and G. A. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27(7), 1281–1284 (1988).
    [CrossRef] [PubMed]
  10. N. F. Borrelli, D. L. Morse, R. H. Bellman, and W. L. Morgan, “Photolytic technique for producing microlenses in photosensitive glass,” Appl. Opt. 24(16), 2520–2525 (1985).
    [CrossRef] [PubMed]
  11. M. B. Stern and T. R. Jay, “Dry etching for coherent refractive microlens array,” Opt. Eng. 33(11), 3547–3551 (1994).
    [CrossRef]
  12. D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens array,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
    [CrossRef]
  13. S. Ziółkowski, I. Frese, H. Kasprzak, and S. Kufner, “Contactless embossing of microlenses--a parameter study,” Opt. Eng. 42(5), 1451–1455 (2003).
    [CrossRef]
  14. Y. C. Lee, C. M. Chen, and C. Y. Wu, “A new excimer laser micromachining method for axially symmetric 3D microstructure with continuous surface profiles,” Sens. Actuators A Phys. 117(2), 349–355 (2005).
    [CrossRef]
  15. Y. C. Lee and C. Y. Wu, “Excimer laser micromachining of aspheric microlenses with precise surface profile control and optimal focusing capability,” Opt. Lasers Eng. 45(1), 116–125 (2007).
    [CrossRef]
  16. Y. C. Lee, C. M. Chen, and C. Y. Wu, “Spherical aspheric microlenses fabricated by excimer laser LIGA-like process,” J. Manuf. Sci. Eng. 129(1), 126–134 (2007).
    [CrossRef]
  17. C. C. Chiu and Y. C. Lee, “Fabricating of aspheric micro-lens array by excimer laser micromachining,” Opt. Lasers Eng. 49, 1232–1237 (2011).
  18. S.-Y. Wang, “Simulated enhancement of the axial symmetry of a micro lens array with a modified mask by using an excimer laser dragging process,” J. Micromech. Microeng. 16(3), 631–639 (2006).
    [CrossRef]
  19. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
  20. R. Kingslake and R. Barry Johnson, Lens design fundamentals (Academic Press, 1978).
  21. K. Naessens, H. Ottevaere, P. Van Daele, and R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Appl. Surf. Sci. 208–209, 159–164 (2003).
    [CrossRef]
  22. J. Arnold, U. Dasbach, W. Ehrfeld, K. Hesch, and H. Löwe, “Combination of excimer laser micromachining and replication processes suited for large scale production,” Appl. Surf. Sci. 86(1-4), 251–258 (1995).
    [CrossRef]

2011 (1)

C. C. Chiu and Y. C. Lee, “Fabricating of aspheric micro-lens array by excimer laser micromachining,” Opt. Lasers Eng. 49, 1232–1237 (2011).

2007 (3)

Y. C. Lee and C. Y. Wu, “Excimer laser micromachining of aspheric microlenses with precise surface profile control and optimal focusing capability,” Opt. Lasers Eng. 45(1), 116–125 (2007).
[CrossRef]

Y. C. Lee, C. M. Chen, and C. Y. Wu, “Spherical aspheric microlenses fabricated by excimer laser LIGA-like process,” J. Manuf. Sci. Eng. 129(1), 126–134 (2007).
[CrossRef]

H. Hocheng and K. Y. Wang, “Analysis and fabrication of minifeature lamp lens by excimer laser micromachining,” Appl. Opt. 46(29), 7184–7189 (2007).
[CrossRef] [PubMed]

2006 (1)

S.-Y. Wang, “Simulated enhancement of the axial symmetry of a micro lens array with a modified mask by using an excimer laser dragging process,” J. Micromech. Microeng. 16(3), 631–639 (2006).
[CrossRef]

2005 (1)

Y. C. Lee, C. M. Chen, and C. Y. Wu, “A new excimer laser micromachining method for axially symmetric 3D microstructure with continuous surface profiles,” Sens. Actuators A Phys. 117(2), 349–355 (2005).
[CrossRef]

2003 (3)

S. Ziółkowski, I. Frese, H. Kasprzak, and S. Kufner, “Contactless embossing of microlenses--a parameter study,” Opt. Eng. 42(5), 1451–1455 (2003).
[CrossRef]

C. H. Tien, Y. E. Chien, Y. Chiu, and H. D. Shieh, “Microlens array fabricated by excimer laser micromachining with gray-tone photolithography,” Jpn. J. Appl. Phys. 42(Part 1, No. 3), 1280–1283 (2003).
[CrossRef]

K. Naessens, H. Ottevaere, P. Van Daele, and R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Appl. Surf. Sci. 208–209, 159–164 (2003).
[CrossRef]

2000 (2)

K. Zimmer, A. Braun, and F. Bigl, “Combination of different processing methods for the fabrication of 3D polymer structures by excimer laser machining,” Appl. Surf. Sci. 154–155, 601–604 (2000).
[CrossRef]

M. C. Gower, “Industrial applications of laser micromachining,” Opt. Express 7(2), 56–67 (2000).
[CrossRef] [PubMed]

1997 (1)

1995 (1)

J. Arnold, U. Dasbach, W. Ehrfeld, K. Hesch, and H. Löwe, “Combination of excimer laser micromachining and replication processes suited for large scale production,” Appl. Surf. Sci. 86(1-4), 251–258 (1995).
[CrossRef]

1994 (3)

M. B. Stern and T. R. Jay, “Dry etching for coherent refractive microlens array,” Opt. Eng. 33(11), 3547–3551 (1994).
[CrossRef]

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens array,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

E. C. Harvey, P. T. Rumsby, M. C. Gower, S. Mihailov, and D. Thomas, “Excimer lasers for micromachining,” Microeng. Opt. 7, 1–4 (1994).

1990 (1)

J. H. Brannon, “Excimer-laser ablation and etching,” IEEE Circuits Devices Mag. 6(5), 18–24 (1990).
[CrossRef]

1988 (1)

1985 (2)

N. F. Borrelli, D. L. Morse, R. H. Bellman, and W. L. Morgan, “Photolytic technique for producing microlenses in photosensitive glass,” Appl. Opt. 24(16), 2520–2525 (1985).
[CrossRef] [PubMed]

P. E. Dyer and J. Sidhu, “Excimer laser ablation and thermal coupling efficiency to polymer films,” J. Appl. Phys. 57(4), 1420–1422 (1985).
[CrossRef]

1965 (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Arnold, J.

J. Arnold, U. Dasbach, W. Ehrfeld, K. Hesch, and H. Löwe, “Combination of excimer laser micromachining and replication processes suited for large scale production,” Appl. Surf. Sci. 86(1-4), 251–258 (1995).
[CrossRef]

Baets, R.

K. Naessens, H. Ottevaere, P. Van Daele, and R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Appl. Surf. Sci. 208–209, 159–164 (2003).
[CrossRef]

Behrmann, G. P.

Bellman, R. H.

Bigl, F.

K. Zimmer, A. Braun, and F. Bigl, “Combination of different processing methods for the fabrication of 3D polymer structures by excimer laser machining,” Appl. Surf. Sci. 154–155, 601–604 (2000).
[CrossRef]

Borrelli, N. F.

Brannon, J. H.

J. H. Brannon, “Excimer-laser ablation and etching,” IEEE Circuits Devices Mag. 6(5), 18–24 (1990).
[CrossRef]

Braun, A.

K. Zimmer, A. Braun, and F. Bigl, “Combination of different processing methods for the fabrication of 3D polymer structures by excimer laser machining,” Appl. Surf. Sci. 154–155, 601–604 (2000).
[CrossRef]

Chen, C. M.

Y. C. Lee, C. M. Chen, and C. Y. Wu, “Spherical aspheric microlenses fabricated by excimer laser LIGA-like process,” J. Manuf. Sci. Eng. 129(1), 126–134 (2007).
[CrossRef]

Y. C. Lee, C. M. Chen, and C. Y. Wu, “A new excimer laser micromachining method for axially symmetric 3D microstructure with continuous surface profiles,” Sens. Actuators A Phys. 117(2), 349–355 (2005).
[CrossRef]

Chen, T.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens array,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

Chien, Y. E.

C. H. Tien, Y. E. Chien, Y. Chiu, and H. D. Shieh, “Microlens array fabricated by excimer laser micromachining with gray-tone photolithography,” Jpn. J. Appl. Phys. 42(Part 1, No. 3), 1280–1283 (2003).
[CrossRef]

Chiu, C. C.

C. C. Chiu and Y. C. Lee, “Fabricating of aspheric micro-lens array by excimer laser micromachining,” Opt. Lasers Eng. 49, 1232–1237 (2011).

Chiu, Y.

C. H. Tien, Y. E. Chien, Y. Chiu, and H. D. Shieh, “Microlens array fabricated by excimer laser micromachining with gray-tone photolithography,” Jpn. J. Appl. Phys. 42(Part 1, No. 3), 1280–1283 (2003).
[CrossRef]

Connell, G. A.

Cox, W. R.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens array,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

Dasbach, U.

J. Arnold, U. Dasbach, W. Ehrfeld, K. Hesch, and H. Löwe, “Combination of excimer laser micromachining and replication processes suited for large scale production,” Appl. Surf. Sci. 86(1-4), 251–258 (1995).
[CrossRef]

Duignan, M. T.

Dyer, P. E.

P. E. Dyer and J. Sidhu, “Excimer laser ablation and thermal coupling efficiency to polymer films,” J. Appl. Phys. 57(4), 1420–1422 (1985).
[CrossRef]

Ehrfeld, W.

J. Arnold, U. Dasbach, W. Ehrfeld, K. Hesch, and H. Löwe, “Combination of excimer laser micromachining and replication processes suited for large scale production,” Appl. Surf. Sci. 86(1-4), 251–258 (1995).
[CrossRef]

Frese, I.

S. Ziółkowski, I. Frese, H. Kasprzak, and S. Kufner, “Contactless embossing of microlenses--a parameter study,” Opt. Eng. 42(5), 1451–1455 (2003).
[CrossRef]

Gower, M. C.

M. C. Gower, “Industrial applications of laser micromachining,” Opt. Express 7(2), 56–67 (2000).
[CrossRef] [PubMed]

E. C. Harvey, P. T. Rumsby, M. C. Gower, S. Mihailov, and D. Thomas, “Excimer lasers for micromachining,” Microeng. Opt. 7, 1–4 (1994).

Harvey, E. C.

E. C. Harvey, P. T. Rumsby, M. C. Gower, S. Mihailov, and D. Thomas, “Excimer lasers for micromachining,” Microeng. Opt. 7, 1–4 (1994).

Hayes, D. J.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens array,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

Hesch, K.

J. Arnold, U. Dasbach, W. Ehrfeld, K. Hesch, and H. Löwe, “Combination of excimer laser micromachining and replication processes suited for large scale production,” Appl. Surf. Sci. 86(1-4), 251–258 (1995).
[CrossRef]

Hocheng, H.

Jay, T. R.

M. B. Stern and T. R. Jay, “Dry etching for coherent refractive microlens array,” Opt. Eng. 33(11), 3547–3551 (1994).
[CrossRef]

Kasprzak, H.

S. Ziółkowski, I. Frese, H. Kasprzak, and S. Kufner, “Contactless embossing of microlenses--a parameter study,” Opt. Eng. 42(5), 1451–1455 (2003).
[CrossRef]

Kufner, S.

S. Ziółkowski, I. Frese, H. Kasprzak, and S. Kufner, “Contactless embossing of microlenses--a parameter study,” Opt. Eng. 42(5), 1451–1455 (2003).
[CrossRef]

Lee, Y. C.

C. C. Chiu and Y. C. Lee, “Fabricating of aspheric micro-lens array by excimer laser micromachining,” Opt. Lasers Eng. 49, 1232–1237 (2011).

Y. C. Lee and C. Y. Wu, “Excimer laser micromachining of aspheric microlenses with precise surface profile control and optimal focusing capability,” Opt. Lasers Eng. 45(1), 116–125 (2007).
[CrossRef]

Y. C. Lee, C. M. Chen, and C. Y. Wu, “Spherical aspheric microlenses fabricated by excimer laser LIGA-like process,” J. Manuf. Sci. Eng. 129(1), 126–134 (2007).
[CrossRef]

Y. C. Lee, C. M. Chen, and C. Y. Wu, “A new excimer laser micromachining method for axially symmetric 3D microstructure with continuous surface profiles,” Sens. Actuators A Phys. 117(2), 349–355 (2005).
[CrossRef]

Löwe, H.

J. Arnold, U. Dasbach, W. Ehrfeld, K. Hesch, and H. Löwe, “Combination of excimer laser micromachining and replication processes suited for large scale production,” Appl. Surf. Sci. 86(1-4), 251–258 (1995).
[CrossRef]

MacFarlane, D. L.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens array,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

Mead, R.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Mihailov, S.

E. C. Harvey, P. T. Rumsby, M. C. Gower, S. Mihailov, and D. Thomas, “Excimer lasers for micromachining,” Microeng. Opt. 7, 1–4 (1994).

Morgan, W. L.

Morse, D. L.

Naessens, K.

K. Naessens, H. Ottevaere, P. Van Daele, and R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Appl. Surf. Sci. 208–209, 159–164 (2003).
[CrossRef]

Narayan, V.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens array,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

Nelder, J. A.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Ottevaere, H.

K. Naessens, H. Ottevaere, P. Van Daele, and R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Appl. Surf. Sci. 208–209, 159–164 (2003).
[CrossRef]

Popovic, Z. D.

Rumsby, P. T.

E. C. Harvey, P. T. Rumsby, M. C. Gower, S. Mihailov, and D. Thomas, “Excimer lasers for micromachining,” Microeng. Opt. 7, 1–4 (1994).

Shieh, H. D.

C. H. Tien, Y. E. Chien, Y. Chiu, and H. D. Shieh, “Microlens array fabricated by excimer laser micromachining with gray-tone photolithography,” Jpn. J. Appl. Phys. 42(Part 1, No. 3), 1280–1283 (2003).
[CrossRef]

Sidhu, J.

P. E. Dyer and J. Sidhu, “Excimer laser ablation and thermal coupling efficiency to polymer films,” J. Appl. Phys. 57(4), 1420–1422 (1985).
[CrossRef]

Sprague, R. A.

Stern, M. B.

M. B. Stern and T. R. Jay, “Dry etching for coherent refractive microlens array,” Opt. Eng. 33(11), 3547–3551 (1994).
[CrossRef]

Tatum, J. A.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens array,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

Thomas, D.

E. C. Harvey, P. T. Rumsby, M. C. Gower, S. Mihailov, and D. Thomas, “Excimer lasers for micromachining,” Microeng. Opt. 7, 1–4 (1994).

Tien, C. H.

C. H. Tien, Y. E. Chien, Y. Chiu, and H. D. Shieh, “Microlens array fabricated by excimer laser micromachining with gray-tone photolithography,” Jpn. J. Appl. Phys. 42(Part 1, No. 3), 1280–1283 (2003).
[CrossRef]

Van Daele, P.

K. Naessens, H. Ottevaere, P. Van Daele, and R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Appl. Surf. Sci. 208–209, 159–164 (2003).
[CrossRef]

Wang, K. Y.

Wang, S.-Y.

S.-Y. Wang, “Simulated enhancement of the axial symmetry of a micro lens array with a modified mask by using an excimer laser dragging process,” J. Micromech. Microeng. 16(3), 631–639 (2006).
[CrossRef]

Wu, C. Y.

Y. C. Lee and C. Y. Wu, “Excimer laser micromachining of aspheric microlenses with precise surface profile control and optimal focusing capability,” Opt. Lasers Eng. 45(1), 116–125 (2007).
[CrossRef]

Y. C. Lee, C. M. Chen, and C. Y. Wu, “Spherical aspheric microlenses fabricated by excimer laser LIGA-like process,” J. Manuf. Sci. Eng. 129(1), 126–134 (2007).
[CrossRef]

Y. C. Lee, C. M. Chen, and C. Y. Wu, “A new excimer laser micromachining method for axially symmetric 3D microstructure with continuous surface profiles,” Sens. Actuators A Phys. 117(2), 349–355 (2005).
[CrossRef]

Zimmer, K.

K. Zimmer, A. Braun, and F. Bigl, “Combination of different processing methods for the fabrication of 3D polymer structures by excimer laser machining,” Appl. Surf. Sci. 154–155, 601–604 (2000).
[CrossRef]

Ziólkowski, S.

S. Ziółkowski, I. Frese, H. Kasprzak, and S. Kufner, “Contactless embossing of microlenses--a parameter study,” Opt. Eng. 42(5), 1451–1455 (2003).
[CrossRef]

Appl. Opt. (4)

Appl. Surf. Sci. (3)

K. Naessens, H. Ottevaere, P. Van Daele, and R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Appl. Surf. Sci. 208–209, 159–164 (2003).
[CrossRef]

J. Arnold, U. Dasbach, W. Ehrfeld, K. Hesch, and H. Löwe, “Combination of excimer laser micromachining and replication processes suited for large scale production,” Appl. Surf. Sci. 86(1-4), 251–258 (1995).
[CrossRef]

K. Zimmer, A. Braun, and F. Bigl, “Combination of different processing methods for the fabrication of 3D polymer structures by excimer laser machining,” Appl. Surf. Sci. 154–155, 601–604 (2000).
[CrossRef]

Comput. J. (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

IEEE Circuits Devices Mag. (1)

J. H. Brannon, “Excimer-laser ablation and etching,” IEEE Circuits Devices Mag. 6(5), 18–24 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens array,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

J. Appl. Phys. (1)

P. E. Dyer and J. Sidhu, “Excimer laser ablation and thermal coupling efficiency to polymer films,” J. Appl. Phys. 57(4), 1420–1422 (1985).
[CrossRef]

J. Manuf. Sci. Eng. (1)

Y. C. Lee, C. M. Chen, and C. Y. Wu, “Spherical aspheric microlenses fabricated by excimer laser LIGA-like process,” J. Manuf. Sci. Eng. 129(1), 126–134 (2007).
[CrossRef]

J. Micromech. Microeng. (1)

S.-Y. Wang, “Simulated enhancement of the axial symmetry of a micro lens array with a modified mask by using an excimer laser dragging process,” J. Micromech. Microeng. 16(3), 631–639 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (1)

C. H. Tien, Y. E. Chien, Y. Chiu, and H. D. Shieh, “Microlens array fabricated by excimer laser micromachining with gray-tone photolithography,” Jpn. J. Appl. Phys. 42(Part 1, No. 3), 1280–1283 (2003).
[CrossRef]

Microeng. Opt. (1)

E. C. Harvey, P. T. Rumsby, M. C. Gower, S. Mihailov, and D. Thomas, “Excimer lasers for micromachining,” Microeng. Opt. 7, 1–4 (1994).

Opt. Eng. (2)

S. Ziółkowski, I. Frese, H. Kasprzak, and S. Kufner, “Contactless embossing of microlenses--a parameter study,” Opt. Eng. 42(5), 1451–1455 (2003).
[CrossRef]

M. B. Stern and T. R. Jay, “Dry etching for coherent refractive microlens array,” Opt. Eng. 33(11), 3547–3551 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (2)

C. C. Chiu and Y. C. Lee, “Fabricating of aspheric micro-lens array by excimer laser micromachining,” Opt. Lasers Eng. 49, 1232–1237 (2011).

Y. C. Lee and C. Y. Wu, “Excimer laser micromachining of aspheric microlenses with precise surface profile control and optimal focusing capability,” Opt. Lasers Eng. 45(1), 116–125 (2007).
[CrossRef]

Sens. Actuators A Phys. (1)

Y. C. Lee, C. M. Chen, and C. Y. Wu, “A new excimer laser micromachining method for axially symmetric 3D microstructure with continuous surface profiles,” Sens. Actuators A Phys. 117(2), 349–355 (2005).
[CrossRef]

Other (1)

R. Kingslake and R. Barry Johnson, Lens design fundamentals (Academic Press, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Excimer laser machining of arrayed microstructures using a contour mask and x-y biaxial laser dragging method.

Fig. 2
Fig. 2

Analysis of laser machined depth distribution in an x-y laser dragging process.

Fig. 3
Fig. 3

Simulated results using a semicircle mask to achieve a semispherical surface: (a) contour lines of machining depth; (b) average axial symmetrical error; (c) simulated surface profiles after laser dragging along several different directions in comparison with originally designed profile and the deviation in surface profiles.

Fig. 4
Fig. 4

Simulated results using a semicircle mask to achieve a low-sag semispherical surface: (a) contour lines of machining depth; (b) average axial symmetrical error; (c) simulated surface profiles after laser dragging along several different directions in comparison with originally designed profile and the deviation in surface profiles.

Fig. 5
Fig. 5

Simulated results using an optimal mask design to achieve a low-sag semispherical surface: (a) contour lines of machining depth; (b) average axial symmetrical error; (c) simulated surface profiles after laser dragging along several different directions in comparison with originally designed profile and the deviation in surface profiles.

Fig. 6
Fig. 6

Zemax simulation of an aspheric microlens with an analog surface profile for minimized focal spot size: (a) sag profile of the lens and light tracing, and (b) light intensity distribution at focal plane and focal spot size.

Fig. 7
Fig. 7

(a) The optimal mask pattern design, h(x), for excimer laser micromachining of an aspheric microlens array; (b) the whole contour mask pattern design; (c) simulated surface profiles along different directions in comparison with the desired one and the discrepancy between machined surface profiles and desired one.

Fig. 8
Fig. 8

SEM micrographs of machined aspheric microlens array.

Fig. 9
Fig. 9

Experimentally measured surface profiles of the machined aspheric microlens array using a confocal microscope: (a) contour graph and (b) cross-section profile.

Fig. 10
Fig. 10

Comparison between machined cross-section 2D profiles with their original design profile in different directions.

Fig. 11
Fig. 11

Deviation between machined surface profiles and designed one in different directions.

Fig. 12
Fig. 12

Surface roughness of machined microlenses measured by an AFM.

Fig. 13
Fig. 13

Experimentally measured light intensity distribution at the focal plane of an aspheric microlens for determining the focal spot size.

Tables (1)

Tables Icon

Table 1 Six Constant-obtained Coefficients for Optimal Contour Mask Design

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

D(r,θ)=f×[h(r*cosθ)+h(r*sinθ)],
h(-x) = h(x).
h(x) = a x 2 +c,
D(r,θ)=f[ a r 2 +c ],
h(x)=R R 2 x 2 + const.,
AASE(r)= 1 2π 0 2π D(r,θ) D ¯ (r) D ¯ (r) dθ,
h(x)= a 0 + a 1 x+ a 2 x 2 +a x 3 3 + a 4 x 4 + a 5 x 5 + a 6 x 6 , for x>0,
Err j=1 N i=1 M | D d ( r i , θ j )D( r i , θ j ) | ,
S(r)= C v * r 2 1+ 1(1+k) C v 2 * r 2 ) + c 2i * r 2i ,

Metrics