Abstract

A wavelength-selective but polarization-insensitive thermophotovoltaic emitter was numerically developed with a binary tungsten grating and its appealing emittance spectra were demonstrated with analysis. Ranges of emitter dimensions were preliminarily confined with the excitation of the surface plasmon polariton, cavity resonance, and Wood’s anomaly at specified wavelengths. Then, a hybrid scheme (the rigorous coupled wave analysis together with a genetic algorithm) was able to finely tailor the grating profile such that emittance could be significantly enhanced in the near infrared region. The peak emittance at the transverse electric and transverse magnetic polarizations was 0.997 and 0.935, respectively. The emittance was actually almost twice that from a plain tungsten plate at short wavelengths but significantly reduced at long wavelengths. Moreover, such spectral emittance is insensitive to the polarization and 5% dimension modification, making the emitter ideal for thermophotovoltaic applications. Patterns of electromagnetic fields and Poynting vectors were able to confirm the excitation of physical mechanisms.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Basu, Y.-B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices–A review,” Int. J. Energy Res. 31(6-7), 689–716 (2007).
    [CrossRef]
  2. A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
    [CrossRef]
  3. H. Sai, Y. Kanamori, K. Hane, and H. Yugami, “Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices,” J. Opt. Soc. Am. A 22(9), 1805–1813 (2005).
    [CrossRef] [PubMed]
  4. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
    [CrossRef]
  5. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
    [CrossRef] [PubMed]
  6. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [CrossRef]
  7. T. Asano, K. Mochizuki, M. Yamaguchi, M. Chaminda, and S. Noda, “Spectrally selective thermal radiation based on intersubband transitions and photonic crystals,” Opt. Express 17(21), 19190–19203 (2009).
    [CrossRef] [PubMed]
  8. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
    [CrossRef]
  9. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
    [CrossRef] [PubMed]
  10. N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express 18(6), 5525–5540 (2010).
    [CrossRef] [PubMed]
  11. Y.-B. Chen and K.-H. Tan, “The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters,” Int, J. Heat Mass Transf. 53(23-24), 5542–5551 (2010).
    [CrossRef]
  12. P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
    [CrossRef] [PubMed]
  13. S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
    [CrossRef] [PubMed]
  14. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
    [CrossRef]
  15. Q.-C. Zhang and D. R. Mills, “Very low-emittance solar selective surfaces using new film structures,” J. Appl. Phys. 72(7), 3013–3021 (1992).
    [CrossRef]
  16. T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sustain. Energy Rev. 3(2-3), 77–184 (1999).
    [CrossRef]
  17. Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
    [CrossRef]
  18. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  19. N. Nguyen-Huu, Y.-L. Lo, Y.-B. Chen, and T.-Y. Yang, “Realization of integrated polarizer and color filters based on subwavelength metallic gratings using a hybrid numerical scheme,” Appl. Opt. 50(4), 415–426 (2011).
    [CrossRef] [PubMed]
  20. D. W. Lynch and W. R. Hunter, “Tungsten (W),” in Hand Book of Optical Constants of Solids, E.D. Palik, Ed. (Academic Press, San Diego, CA, 1985).
  21. R. C. McPhedran and D. Maystre, “A detailed theoretical study of the anomalies of a sinusoidal diffraction grating,” Opt. Acta (Lond.) 21(5), 413–421 (1974).
    [CrossRef]
  22. M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19(3), 431–436 (1976).
    [CrossRef]
  23. E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16(9), 6146–6155 (2008).
    [CrossRef] [PubMed]
  24. E. Popov and L. Tsonev, “Comment on ‘Resonant electric field enhancement in the vicinity of a bare metallic grating exposed to s-polarized light by A.A. Maradudin and A. Wirgin’,” Surf. Sci. Lett. 271(3), L378–L382 (1992).
    [CrossRef]
  25. E. Popov, L. Tsonev, and D. Maystre, “Lamellar metallic grating anomalies,” Appl. Opt. 33(22), 5214–5219 (1994).
    [CrossRef] [PubMed]
  26. A. Hessel and A. A. Oliner, “A new theory of Wood's anomalies on optical gratings,” Appl. Opt. 4(10), 1275–1297 (1965).
    [CrossRef]
  27. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
    [CrossRef]
  28. K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, and H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express 16(23), 18599–18604 (2008).
    [CrossRef] [PubMed]
  29. Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93(6), 061102 (2008).
    [CrossRef]
  30. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-Infrared,” J. Comput. Theory Nanosci. 5, 201–213 (2008).
  31. F. Marquier, J.-J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13(1), 70–76 (2005).
    [CrossRef] [PubMed]
  32. Z. Nichalewicz, Genetic Algorithms + Data Strucutres = Evolution Programs (Spring-Verlag, New York, 1992).
  33. L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta (Lond.) 28(8), 1103–1106 (1981).
    [CrossRef]
  34. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [CrossRef]
  35. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996).
    [CrossRef]
  36. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13(4), 779–784 (1996).
    [CrossRef]
  37. G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13(5), 1019–1023 (1996).
    [CrossRef]
  38. C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
    [CrossRef]
  39. C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
    [CrossRef]

2011

2010

N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express 18(6), 5525–5540 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

Y.-B. Chen and K.-H. Tan, “The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters,” Int, J. Heat Mass Transf. 53(23-24), 5542–5551 (2010).
[CrossRef]

2009

2008

E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16(9), 6146–6155 (2008).
[CrossRef] [PubMed]

K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, and H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express 16(23), 18599–18604 (2008).
[CrossRef] [PubMed]

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93(6), 061102 (2008).
[CrossRef]

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-Infrared,” J. Comput. Theory Nanosci. 5, 201–213 (2008).

2007

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[CrossRef]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

S. Basu, Y.-B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices–A review,” Int. J. Energy Res. 31(6-7), 689–716 (2007).
[CrossRef]

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
[CrossRef]

2005

2004

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[CrossRef]

2003

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

1999

T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sustain. Energy Rev. 3(2-3), 77–184 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[CrossRef]

1996

1995

1994

1992

E. Popov and L. Tsonev, “Comment on ‘Resonant electric field enhancement in the vicinity of a bare metallic grating exposed to s-polarized light by A.A. Maradudin and A. Wirgin’,” Surf. Sci. Lett. 271(3), L378–L382 (1992).
[CrossRef]

Q.-C. Zhang and D. R. Mills, “Very low-emittance solar selective surfaces using new film structures,” J. Appl. Phys. 72(7), 3013–3021 (1992).
[CrossRef]

1981

L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta (Lond.) 28(8), 1103–1106 (1981).
[CrossRef]

1976

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19(3), 431–436 (1976).
[CrossRef]

1974

R. C. McPhedran and D. Maystre, “A detailed theoretical study of the anomalies of a sinusoidal diffraction grating,” Opt. Acta (Lond.) 21(5), 413–421 (1974).
[CrossRef]

1965

Agrawal, M.

Asano, T.

Basu, S.

S. Basu, Y.-B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices–A review,” Int. J. Energy Res. 31(6-7), 689–716 (2007).
[CrossRef]

Botten, L. C.

L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta (Lond.) 28(8), 1103–1106 (1981).
[CrossRef]

Celanovic, I.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[CrossRef]

Chaminda, M.

Chen, G.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[CrossRef]

Chen, J.

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, and H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express 16(23), 18599–18604 (2008).
[CrossRef] [PubMed]

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
[CrossRef]

Chen, Y.-B.

N. Nguyen-Huu, Y.-L. Lo, Y.-B. Chen, and T.-Y. Yang, “Realization of integrated polarizer and color filters based on subwavelength metallic gratings using a hybrid numerical scheme,” Appl. Opt. 50(4), 415–426 (2011).
[CrossRef] [PubMed]

Y.-B. Chen and K.-H. Tan, “The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters,” Int, J. Heat Mass Transf. 53(23-24), 5542–5551 (2010).
[CrossRef]

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-Infrared,” J. Comput. Theory Nanosci. 5, 201–213 (2008).

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[CrossRef]

S. Basu, Y.-B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices–A review,” Int. J. Energy Res. 31(6-7), 689–716 (2007).
[CrossRef]

Cheng, C.

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
[CrossRef]

Cho, M. H.

Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93(6), 061102 (2008).
[CrossRef]

Collin, S.

Coutts, T. J.

T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sustain. Energy Rev. 3(2-3), 77–184 (1999).
[CrossRef]

Craig, M. S.

L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta (Lond.) 28(8), 1103–1106 (1981).
[CrossRef]

Derrick, G. H.

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Ding, J.

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

Fan, Y.-X.

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Gaylord, T. K.

Granet, G.

Grann, E. B.

Greffet, J.-J.

Guizal, B.

Han, S. E.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

Hane, K.

Hessel, A.

Homola, J.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[CrossRef]

Hutley, M. C.

Kanamori, Y.

H. Sai, Y. Kanamori, K. Hane, and H. Yugami, “Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices,” J. Opt. Soc. Am. A 22(9), 1805–1813 (2005).
[CrossRef] [PubMed]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

Kassakian, J.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[CrossRef]

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[CrossRef]

Lalanne, P.

Lee, B. J.

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-Infrared,” J. Comput. Theory Nanosci. 5, 201–213 (2008).

Lee, Y.

Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93(6), 061102 (2008).
[CrossRef]

Li, L.

Lin, K.

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Lo, Y.-L.

Lu, Y.

K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, and H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express 16(23), 18599–18604 (2008).
[CrossRef] [PubMed]

Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93(6), 061102 (2008).
[CrossRef]

Marquier, F.

Maystre, D.

E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16(9), 6146–6155 (2008).
[CrossRef] [PubMed]

E. Popov, L. Tsonev, and D. Maystre, “Lamellar metallic grating anomalies,” Appl. Opt. 33(22), 5214–5219 (1994).
[CrossRef] [PubMed]

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19(3), 431–436 (1976).
[CrossRef]

R. C. McPhedran and D. Maystre, “A detailed theoretical study of the anomalies of a sinusoidal diffraction grating,” Opt. Acta (Lond.) 21(5), 413–421 (1974).
[CrossRef]

McPhedran, R. C.

E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16(9), 6146–6155 (2008).
[CrossRef] [PubMed]

L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta (Lond.) 28(8), 1103–1106 (1981).
[CrossRef]

R. C. McPhedran and D. Maystre, “A detailed theoretical study of the anomalies of a sinusoidal diffraction grating,” Opt. Acta (Lond.) 21(5), 413–421 (1974).
[CrossRef]

Mills, D. R.

Q.-C. Zhang and D. R. Mills, “Very low-emittance solar selective surfaces using new film structures,” J. Appl. Phys. 72(7), 3013–3021 (1992).
[CrossRef]

Ming, H.

Mochizuki, K.

Moharam, M. G.

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Morris, G. M.

Nagpal, P.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

Narayanaswamy, A.

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[CrossRef]

Nevière, M.

Nguyen-Huu, N.

Noda, S.

Norris, D. J.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

Oliner, A. A.

Pardo, F.

Pelouard, J. L.

Perreault, D.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[CrossRef]

Peumans, P.

Pincon, O.

Pommet, D. A.

Popov, E.

Ren, F.-F.

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
[CrossRef]

Rhee, J. Y.

Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93(6), 061102 (2008).
[CrossRef]

Sai, H.

H. Sai, Y. Kanamori, K. Hane, and H. Yugami, “Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices,” J. Opt. Soc. Am. A 22(9), 1805–1813 (2005).
[CrossRef] [PubMed]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

Sergeant, N. P.

Shi, D.-J.

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Stein, A.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

Tan, K.-H.

Y.-B. Chen and K.-H. Tan, “The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters,” Int, J. Heat Mass Transf. 53(23-24), 5542–5551 (2010).
[CrossRef]

Tsonev, L.

E. Popov, L. Tsonev, and D. Maystre, “Lamellar metallic grating anomalies,” Appl. Opt. 33(22), 5214–5219 (1994).
[CrossRef] [PubMed]

E. Popov and L. Tsonev, “Comment on ‘Resonant electric field enhancement in the vicinity of a bare metallic grating exposed to s-polarized light by A.A. Maradudin and A. Wirgin’,” Surf. Sci. Lett. 271(3), L378–L382 (1992).
[CrossRef]

Wang, H.-T.

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
[CrossRef]

Wang, P.

Wu, Q.-Y.

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
[CrossRef]

Xu, J.

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
[CrossRef]

Yamaguchi, M.

Yang, T.-Y.

Yee, S. S.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[CrossRef]

Yugami, H.

H. Sai, Y. Kanamori, K. Hane, and H. Yugami, “Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices,” J. Opt. Soc. Am. A 22(9), 1805–1813 (2005).
[CrossRef] [PubMed]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

Zhang, Q.-C.

Q.-C. Zhang and D. R. Mills, “Very low-emittance solar selective surfaces using new film structures,” J. Appl. Phys. 72(7), 3013–3021 (1992).
[CrossRef]

Zhang, Z. M.

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-Infrared,” J. Comput. Theory Nanosci. 5, 201–213 (2008).

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[CrossRef]

S. Basu, Y.-B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices–A review,” Int. J. Energy Res. 31(6-7), 689–716 (2007).
[CrossRef]

Zheng, R.

Appl. Opt.

Appl. Phys. Lett.

C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett. 91(11), 111111 (2007).
[CrossRef]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93(6), 061102 (2008).
[CrossRef]

Int, J. Heat Mass Transf.

Y.-B. Chen and K.-H. Tan, “The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters,” Int, J. Heat Mass Transf. 53(23-24), 5542–5551 (2010).
[CrossRef]

Int. J. Energy Res.

S. Basu, Y.-B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices–A review,” Int. J. Energy Res. 31(6-7), 689–716 (2007).
[CrossRef]

J. Appl. Phys.

Q.-C. Zhang and D. R. Mills, “Very low-emittance solar selective surfaces using new film structures,” J. Appl. Phys. 72(7), 3013–3021 (1992).
[CrossRef]

J. Comput. Theory Nanosci.

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-Infrared,” J. Comput. Theory Nanosci. 5, 201–213 (2008).

J. Opt. Soc. Am. A

Nano Lett.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

Opt. Acta (Lond.)

R. C. McPhedran and D. Maystre, “A detailed theoretical study of the anomalies of a sinusoidal diffraction grating,” Opt. Acta (Lond.) 21(5), 413–421 (1974).
[CrossRef]

L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta (Lond.) 28(8), 1103–1106 (1981).
[CrossRef]

Opt. Commun.

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19(3), 431–436 (1976).
[CrossRef]

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[CrossRef]

Opt. Express

Phys. Rev. B

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[CrossRef]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[CrossRef]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Phys. Rev. Lett.

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[CrossRef] [PubMed]

Renew. Sustain. Energy Rev.

T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sustain. Energy Rev. 3(2-3), 77–184 (1999).
[CrossRef]

Sens. Actuators B Chem.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[CrossRef]

Surf. Sci. Lett.

E. Popov and L. Tsonev, “Comment on ‘Resonant electric field enhancement in the vicinity of a bare metallic grating exposed to s-polarized light by A.A. Maradudin and A. Wirgin’,” Surf. Sci. Lett. 271(3), L378–L382 (1992).
[CrossRef]

Other

Z. Nichalewicz, Genetic Algorithms + Data Strucutres = Evolution Programs (Spring-Verlag, New York, 1992).

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

D. W. Lynch and W. R. Hunter, “Tungsten (W),” in Hand Book of Optical Constants of Solids, E.D. Palik, Ed. (Academic Press, San Diego, CA, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of the proposed binary tungsten grating as the polarization-insensitive thermophotovoltaic emitter. The geometry of the binary grating is determined by its period (Λ), linewidth (w), groove width (a), and thickness (d). The coordinates system is also shown for TM (TE) polarized plan wave with a wavevector k at the angle of incidence θ.

Fig. 2
Fig. 2

Emittance of the binary tungsten grating at θ=0° and θ=20° for: (a) TM wave, (b) TE wave.

Fig. 3
Fig. 3

Distribution of EM fields and the corresponding distributions of Poynting vectors for TE and TM waves, respectively, of (a) at λ = 0.645 μm and (b) at λ = 0.890 μm. (H) and (E) fields are on the same color bar scale while (S)x and (S)z are on the same color bar scale as marked at the top.

Fig. 4
Fig. 4

Distributions of (H) fields for θ = 0° at λ = 0.645 μm and λ = 0.890 μm at the far field.

Fig. 5
Fig. 5

Emittance spectra for both TM and TE waves with fabrication tolerances of the grating width w, and grating thickness d.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n d sinθ+j λ Λ =± ε m n d 2 ε m + n d 2
Λ> jλ n d ,j>0
| j |λ 2 n d <Λ< | j |λ n d ,j<0
λ mn = 2 (l/a) 2 + (m/d) 2 ,
( λ Λ j) 2 +2 λ Λ jsinθ cos 2 θ=0

Metrics