Abstract

We report systematic results on the development of horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguide components operating at 1550-nm telecom wavelengths, including straight waveguides, sharp 90° bends, power splitters, and Mach-Zehnder interferometers (MZIs). Owing to the relatively low loss for propagating (~0.3 dB/µm) and for 90° sharply bending (~0.73 dB/turn), various ultracompact power splitters and MZIs are experimentally realized on a silicon-on-insulator (SOI) platform using standard CMOS technology. The demonstrated splitters exhibit a relatively low excess loss and the MZIs exhibit good performance such as high extinction ratio of ~18 dB and low normalized insertion loss of ~1.7 dB. The experimental results of these devices agree well with those predicted from numerical simulations with suitable Cu permittivity data.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
    [CrossRef]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [CrossRef]
  3. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
    [CrossRef]
  4. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  5. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
    [CrossRef]
  6. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16(4), 2676–2684 (2008).
    [CrossRef] [PubMed]
  7. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [CrossRef]
  8. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric –loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
    [CrossRef]
  9. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
    [CrossRef]
  10. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
    [CrossRef] [PubMed]
  11. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18(26), 27802–27819 (2010).
    [CrossRef] [PubMed]
  12. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide,” Opt. Express 19(17), 15843–15854 (2011).
    [CrossRef] [PubMed]
  13. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. 99(3), 031112 (2011).
    [CrossRef]
  14. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicron radius,” IEEE Photon. Technol. Lett. 23(24), 1896–1898 (2011).
    [CrossRef]
  15. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99(15), 151114 (2011).
    [CrossRef]
  16. J. W. Peng, S. J. Lee, G. C. A. Liang, N. Singh, S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Improved carrier injection in gate-all-around Schottky barrier silicon nanowaire field-effect transistors,” Appl. Phys. Lett. 93(7), 073503 (2008).
    [CrossRef]
  17. http://www.rsoftinc.com
  18. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]
  19. S. Roberts, “Optical properties of copper,” Phys. Rev. 118(6), 1509–1518 (1960).
    [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).
  21. G. S. Mathad, Copper Interconnects, New Contact Metallurgies, Structures, and Low-k Interlevel Dielectrics (The Electrochemical Society, Inc., New Jersey, USA, 2003).
  22. S. Y. Zhu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides,” Opt. Express 17(23), 20891–20899 (2009).
    [CrossRef] [PubMed]
  23. W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5120–5124 (2010).
    [CrossRef] [PubMed]
  24. G. T. Reed, Silicon Photonics: The State of the Art (John Wiley &Sons, Ltd, 2008), Chap. 7.

2011 (6)

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. 99(3), 031112 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicron radius,” IEEE Photon. Technol. Lett. 23(24), 1896–1898 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99(15), 151114 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide,” Opt. Express 19(17), 15843–15854 (2011).
[CrossRef] [PubMed]

2010 (3)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5120–5124 (2010).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18(26), 27802–27819 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (5)

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16(4), 2676–2684 (2008).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[CrossRef]

J. W. Peng, S. J. Lee, G. C. A. Liang, N. Singh, S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Improved carrier injection in gate-all-around Schottky barrier silicon nanowaire field-effect transistors,” Appl. Phys. Lett. 93(7), 073503 (2008).
[CrossRef]

2007 (1)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric –loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[CrossRef]

2006 (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[CrossRef]

1998 (1)

1960 (1)

S. Roberts, “Optical properties of copper,” Phys. Rev. 118(6), 1509–1518 (1960).
[CrossRef]

Bartal, G.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16(4), 2676–2684 (2008).
[CrossRef] [PubMed]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric –loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[CrossRef]

Brongersma, M. L.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5120–5124 (2010).
[CrossRef] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[CrossRef]

Cai, W.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5120–5124 (2010).
[CrossRef] [PubMed]

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[CrossRef]

Djurisic, A. B.

Dragoman, D.

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

Dragoman, M.

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

Elazar, J. M.

Fan, S.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5120–5124 (2010).
[CrossRef] [PubMed]

Fang, Q.

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

Holmgaard, T.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric –loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[CrossRef]

Jung, J.

Kwong, D. L.

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. 99(3), 031112 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicron radius,” IEEE Photon. Technol. Lett. 23(24), 1896–1898 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide,” Opt. Express 19(17), 15843–15854 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99(15), 151114 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18(26), 27802–27819 (2010).
[CrossRef] [PubMed]

S. Y. Zhu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides,” Opt. Express 17(23), 20891–20899 (2009).
[CrossRef] [PubMed]

J. W. Peng, S. J. Lee, G. C. A. Liang, N. Singh, S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Improved carrier injection in gate-all-around Schottky barrier silicon nanowaire field-effect transistors,” Appl. Phys. Lett. 93(7), 073503 (2008).
[CrossRef]

Lee, S. J.

J. W. Peng, S. J. Lee, G. C. A. Liang, N. Singh, S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Improved carrier injection in gate-all-around Schottky barrier silicon nanowaire field-effect transistors,” Appl. Phys. Lett. 93(7), 073503 (2008).
[CrossRef]

Liang, G. C. A.

J. W. Peng, S. J. Lee, G. C. A. Liang, N. Singh, S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Improved carrier injection in gate-all-around Schottky barrier silicon nanowaire field-effect transistors,” Appl. Phys. Lett. 93(7), 073503 (2008).
[CrossRef]

Liow, T. Y.

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[CrossRef]

Lo, G. Q.

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99(15), 151114 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide,” Opt. Express 19(17), 15843–15854 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicron radius,” IEEE Photon. Technol. Lett. 23(24), 1896–1898 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. 99(3), 031112 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18(26), 27802–27819 (2010).
[CrossRef] [PubMed]

S. Y. Zhu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides,” Opt. Express 17(23), 20891–20899 (2009).
[CrossRef] [PubMed]

J. W. Peng, S. J. Lee, G. C. A. Liang, N. Singh, S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Improved carrier injection in gate-all-around Schottky barrier silicon nanowaire field-effect transistors,” Appl. Phys. Lett. 93(7), 073503 (2008).
[CrossRef]

Majewski, M. L.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Peng, J. W.

J. W. Peng, S. J. Lee, G. C. A. Liang, N. Singh, S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Improved carrier injection in gate-all-around Schottky barrier silicon nanowaire field-effect transistors,” Appl. Phys. Lett. 93(7), 073503 (2008).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Rakic, A. D.

Roberts, S.

S. Roberts, “Optical properties of copper,” Phys. Rev. 118(6), 1509–1518 (1960).
[CrossRef]

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[CrossRef]

Shin, W.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5120–5124 (2010).
[CrossRef] [PubMed]

Singh, N.

J. W. Peng, S. J. Lee, G. C. A. Liang, N. Singh, S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Improved carrier injection in gate-all-around Schottky barrier silicon nanowaire field-effect transistors,” Appl. Phys. Lett. 93(7), 073503 (2008).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Yu, M. B.

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[CrossRef]

Zhu, S. Y.

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. 99(3), 031112 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicron radius,” IEEE Photon. Technol. Lett. 23(24), 1896–1898 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide,” Opt. Express 19(17), 15843–15854 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99(15), 151114 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18(26), 27802–27819 (2010).
[CrossRef] [PubMed]

S. Y. Zhu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides,” Opt. Express 17(23), 20891–20899 (2009).
[CrossRef] [PubMed]

J. W. Peng, S. J. Lee, G. C. A. Liang, N. Singh, S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Improved carrier injection in gate-all-around Schottky barrier silicon nanowaire field-effect transistors,” Appl. Phys. Lett. 93(7), 073503 (2008).
[CrossRef]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. (Deerfield Beach Fla.) 22(45), 5120–5124 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. 99(3), 031112 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99(15), 151114 (2011).
[CrossRef]

J. W. Peng, S. J. Lee, G. C. A. Liang, N. Singh, S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Improved carrier injection in gate-all-around Schottky barrier silicon nanowaire field-effect transistors,” Appl. Phys. Lett. 93(7), 073503 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicron radius,” IEEE Photon. Technol. Lett. 23(24), 1896–1898 (2011).
[CrossRef]

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[CrossRef]

Nat. Photonics (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

New J. Phys. (1)

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[CrossRef]

Opt. Express (5)

Phys. Rev. (1)

S. Roberts, “Optical properties of copper,” Phys. Rev. 118(6), 1509–1518 (1960).
[CrossRef]

Phys. Rev. B (1)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric –loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[CrossRef]

Prog. Quantum Electron. (1)

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Other (4)

http://www.rsoftinc.com

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).

G. S. Mathad, Copper Interconnects, New Contact Metallurgies, Structures, and Low-k Interlevel Dielectrics (The Electrochemical Society, Inc., New Jersey, USA, 2003).

G. T. Reed, Silicon Photonics: The State of the Art (John Wiley &Sons, Ltd, 2008), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Microscope picture of one fabricated device (a 1 × 4 power splitter), the Cu-covered plasmonic component is inserted in the Si-waveguide network; (b) Schematic Si pattern of the 1 × 4 power splitter, each branch of the plasmonic splitter is connected with a Si waveguide through a 1-µm-long tapered coupler, the yellow rectangle is the SiO2 window which will be covered by Cu; (c) Schematic cross section of the Cu-SiO2-Si-SiO2-Cu waveguide; and (d) Cross-sectional transmission electron microcopy (XTEM) image of the fabricated plasmonic waveguide, showing a quasi-rectangular Si core (~94-nm × ~327-nm) surrounded by a ~28-nm-thick thermal SiO2 layer and covered by a thick Cu layer.

Fig. 2
Fig. 2

Transmitted powers versus the length of straight plasmonic waveguides with different WPs, normalized by that measured from the reference waveguide without the plasmonic area. Each data point is averaged from three sets of waveguides. The linearly fitting lines give the propagation loss and the coupling loss of the 1-µm-long tapered coupler which links the 500-nm-wide Si channel waveguide and the plasmonic waveguide.

Fig. 3
Fig. 3

(a) Propagation loss, and (b) Real effective index (neff) at 1550 nm wavelength for the Cu-SiO2-Si-SiO2-Cu plasmonic waveguides with various SiO2 thicknesses. The curves are obtained from 3D FDTD simulation with Cu permittivity of −122 + 6.2i [19]. The experimental propagation losses are read from Fig. 2 and from Ref [10]. The experimental neff data are extracted from the plasmonic MZIs.

Fig. 4
Fig. 4

(a)-(f) SEM images (the Si core patterns) of a set of bent plasmonic waveguides which contains 2, 4, 6, 8, 10, and 12 sharp 90° bends, respectively, the total plasmonci waveguide length is 13 µm; (g) Normalized magnetic field (Hy) distribution in a sharp 90° bend with 64-nm WP and 28-nm SiO2, obtained from the 3D FDTD simulation. The power indicated after the junction is the pure bending loss, calculated by comparing the powers monitored before and after the junction and subtracting the propagation loss through the same distance in the straight plasmonic waveguide; (h) Transmission spectra measured on a set of bent plasmonic waveguides with 64-nm WP and a 13-µm-long plasmonic straight waveguide (represented by “0”); and (i) Transmitted powers measured on bent plasmonic waveguides with different WPs as a function of the number of bends, normalized by the corresponding 13-µm-long straight plsmonic waveguide. The bending loss is estimated from a linearly fitting line through zero.

Fig. 5
Fig. 5

(a) SEM image (the Si core pattern) of a symmetric 1 × 2 splitter with 90° opening angle; (b) Normalized Hy distribution in the 1 × 2 splitter with 64-nm WP and 28-nm SiO2, obtained from the 3D FDTD simulation, the indicated values after the junction are normalized by the input power and subtracted the propagation loss through the same distance in the straight waveguide; (c) The spectra measured from output ports of a 1 × 2 splitter with 64-nm WP, normalized by that measured on a corresponding 3-µm-long straight plasmonic waveguide. The indicated values are averaged from three identical splitters; (d)-(f) are the corresponding figures for a symmetric 1 × 4 splitter.

Fig. 6
Fig. 6

(a) SEM image (the Si core pattern) of an asymmetric 1 × 2 splitter with 30° opening angle; (b) Normalized Hy distribution in the splitter with 64-nm WP and 28-nm SiO2, obtained from the 3D FDTD simulation. The indicated values after the junction are normalized by the input power and subtracted the propagation loss through the same distance in the straight waveguide; (c) The spectra measured from each output port of a splitter with 64-nm WP, normalized by that measured from the 3-µm-long straight plasmonic waveguide. The indicated values are averaged from three identical splitters; (d)-(f) are the corresponding figures for an asymmetric 1 × 2 splitter with 60° opening angle; (g)-(i) are the corresponding figures for an asymmetric 1 × 2 splitter with 90° opening angle (the ⊥-splitter); (j)-(l) are the corresponding figures for a symmetric 1 × 2 T-splitter for comparison.

Fig. 9
Fig. 9

(a) Schematic top view of plasmonic MZIs designed in this work, ΔL varies from 0 to 0.8 µm with a step of 0.1 µm; (b) SEM image (Si core pattern) of MZI with ΔL = 0; (c) Normalized Hy distribution in the MZI with 64-nm WP and 28-nm SiO2, obtained from the 3D FDTD simulation. The indicated value at the output plasmonic waveguide is normalized by the input power and subtracted the propagation loss of 5-µm-long straight plasmonic waveguide; (d)-(e) are the corresponding figures for the MZI with ΔL = 0.4 µm; and (f)-(g) are the corresponding figures for the MZI with ΔL = 0.8 µm.

Fig. 7
Fig. 7

3D FDTD simulation results of (a) ⊥-splitter and (b) T-splitter, which have the same parameters as those shown in Figs. 6 (h) and (k), respectively, but with an enlarged junction which is approximated to an equilateral triangle with the side length of 0.3 μm for simplification.

Fig. 8
Fig. 8

(a) SEM image (the Si core pattern) of a 1 × 3 cross splitter with one junction; (b) Normalized Hy distribution in the splitter with 64-nm WP and 28-nm SiO2, obtained from the 3D FDTD simulation. The indicated values after the junction are normalized by the input power and subtracted the propagation loss through the same distance in the straight plasmonic waveguide; (c) The spectra measured from each output port of the splitter, subtracted by the straight waveguide with the same plasmonic route length. The indicated values are averaged from three identical splitters; (d)-(f) are the corresponding figures for a 1 × 3 splitter with two junctions; (g)-(i) are the corresponding figures for a 1 × 5 splitter with four junctions.

Fig. 10
Fig. 10

(a) The normalized transmission spectra measured on MZIs with ΔL of 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 µm, respectively; (b) The transmitted powers obtained from measurement and simulation as a function of ΔL, as well as the fitting curve based on Eq. (1) with the best fitting parameters of α1 = 0.69 and neff = 1.85.

Fig. 11
Fig. 11

(a) Schematic top view of ultracompact plasmonic MZIs with R of 0.9 µm and ΔL varying from 0 to 0.3 µm; (b) SEM image (Si core patterns) of MZI with ΔL = 0; (c) Normalized Hy distribution in the MZI with 64-nm WP and 28-nm SiO2, obtained from the 3D FDTD simulation, The indicated value at the output plasmonic waveguide is normalized by the input power and subtracted the propagation loss of 3.8-µm-long straight plasmonic waveguide; and (d)-(e) are the corresponding figures for MZI with ΔL = 0.2 µm.

Fig. 12
Fig. 12

(a) The transmission spectra measured on MZIs with ΔL = 0, 0.1, 0.15, 0.2, 0.25, and 0.3, respectively, normalized by the 4.8-µm-long straight plasmonic waveguide; (b) The transmitted powers obtained from measurement and simulation as a function of ΔL, as well as the fitting curve based on Eq. (1) with the best fitting parameters of α1 = 0.45 and neff = 1.75.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T(λ)= 1 4 α 1 [ 1+ α 2 2 +2 α 2 cos( 2π λ n eff ΔL ) ]

Metrics