Abstract

A dielectric pipe waveguide is successfully demonstrated as a terahertz refractive index sensor for powder and liquid-vapor sensing. Without additional engineered structures, a simple pipe waveguide can act as a terahertz resonator based on anti-resonant reflecting guidance, forming multiple resonant transmission-dips. Loading various powders in the ring-cladding or inserting different vapors into the hollow core of the pipe waveguide leads to a significant shift of resonant frequency, and the spectral shift is related to the refractive-index change. The proven detection limit of molecular density could be reduced to 1.6nano-mole/mm3 and the highest sensitivity is demonstrated at around 22.2GHz/refractive-index-unit (RIU), which is comparable to the best THz molecular sensor [Appl. Phys. Lett. 95, 171113 (2009)].

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
    [CrossRef]
  2. W. Withayachumnankul, B. M. Fischer, H. Lin, and D. Abbott, “Uncertainty in terahertz time-domain spectroscopy measurement,” J. Opt. Soc. Am. B 25(6), 1059–1072 (2008).
    [CrossRef]
  3. H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
    [CrossRef]
  4. M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
    [CrossRef]
  5. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
    [CrossRef] [PubMed]
  6. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
    [CrossRef]
  7. A. M. Zheltikov, “Ray-optic analysis of the (bio)sensing ability of ring-cladding hollow waveguides,” Appl. Opt. 47(3), 474–479 (2008).
    [CrossRef] [PubMed]
  8. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
    [CrossRef] [PubMed]
  9. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [CrossRef] [PubMed]
  10. B. You, J.-Y. Lu, J.-H. Liou, C.-P. Yu, H.-Z. Chen, T.-A. Liu, and J.-L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express 18(18), 19353–19360 (2010).
    [CrossRef] [PubMed]
  11. R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
    [CrossRef]
  12. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [CrossRef] [PubMed]
  13. J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Millim. 17, 1996–2034 (1996).
  14. N. Kinrot, “Analysis of bulk material sensing using a periodically segmented waveguide Mach–Zehnder interferometer for biosensing,” J. Lightwave Technol. 22(10), 2296–2301 (2004).
    [CrossRef]
  15. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [CrossRef] [PubMed]
  16. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
  17. J. A. Dean, Lange's Handbook of Chemistry (McGraw-Hill, 1999), Chap.5.
  18. E. W. Washburn,International Critical Tables of Numerical Data, Physics, Chemistry and Technology (Knovel, 2003), Vol. IV.

2010

2009

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[CrossRef]

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[CrossRef] [PubMed]

2008

2007

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[CrossRef]

2006

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[CrossRef]

2005

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
[CrossRef]

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).

2004

2003

2002

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
[CrossRef] [PubMed]

1996

J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Millim. 17, 1996–2034 (1996).

Abbott, D.

Abeeluck, A. K.

Astley, V.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[CrossRef]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).

Bosserhoff, A.

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

Brener, I.

Brucherseifer, M.

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

Büttner, R.

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

Chang, H.-C.

Chen, H.-W.

Chen, H.-Z.

Citrin, D. S.

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
[CrossRef]

Eggleton, B. J.

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).

Fischer, B. M.

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).

Han, J.

Haring Bolivar, P.

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

Headley, C.

Hsueh, Y.-C.

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).

Huang, Y.-J.

Inoue, H.

Jansen, C.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[CrossRef]

Kawase, K.

Kinrot, N.

Koch, M.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[CrossRef]

Kürner, T.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[CrossRef]

Kurt, H.

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
[CrossRef]

Kurz, H.

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

Lai, C.-H.

Lamb, J. W.

J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Millim. 17, 1996–2034 (1996).

Lin, H.

Liou, J.-H.

Litchinitser, N. M.

Liu, J.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[CrossRef]

Liu, T.-A.

Lu, J.-Y.

Mendis, R.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[CrossRef]

Mittleman, D.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[CrossRef]

Mittleman, D. M.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[CrossRef]

Nagel, M.

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

O’Hara, J. F.

Ogawa, Y.

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).

Peng, J.-L.

Pickwell, E.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[CrossRef]

Piesiewicz, R.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[CrossRef]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).

Singh, R.

Smirnova, E.

Sun, C.-K.

Taylor, A. J.

Wallace, V. P.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[CrossRef]

Watanabe, Y.

Wietzke, S.

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[CrossRef]

Withayachumnankul, W.

You, B.

Yu, C.-P.

Zhang, W.

Zheltikov, A. M.

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).

Appl. Opt.

Appl. Phys. Lett.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[CrossRef]

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
[CrossRef]

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

Int. J. Infrared Millim. Waves

R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28(5), 363–371 (2007).
[CrossRef]

Int. J. Infrared. Millim.

J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Millim. 17, 1996–2034 (1996).

J. Lightwave Technol.

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Semicond. Sci. Technol.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).

Other

J. A. Dean, Lange's Handbook of Chemistry (McGraw-Hill, 1999), Chap.5.

E. W. Washburn,International Critical Tables of Numerical Data, Physics, Chemistry and Technology (Knovel, 2003), Vol. IV.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Cross section of a PP-pipe-waveguide sensor with an inner diameter Din of 12mm. (b) Top view of the porous PVC adsorber. (c) Theoretical and measured normalized transmission power spectra of a PP-pipe waveguide, which include the 1st and 2nd-order resonant dips at 0.12~0.4THz. (Inset) Transverse THz modal power distributions at the 1st and 2nd-order resonant frequencies in the PP-pipe-waveguide. The cyan and orange regions respectively represent the PP pipe-wall and porous PVC adsorber, and the hollow core of the waveguide is located at positions of −6~6mm.

Fig. 2
Fig. 2

(a) Measured spectral positions of 1st-order resonant waves for different adsorbed powders in the outer cladding. (b) Simulated spectral positions of 1st-order resonant waves. (c) Dependence of the 1st-order resonant-dip frequency on refractive indices of melamine, tryptophan and their mixed powders measured by the PP-pipe-waveguide sensor. The indices of melamine and tryptophan powders are compared with the results measured by THz-TDS. (d) Transverse power distributions of the 1st-order resonant wave in the PP-pipe-waveguide sensor for different refractive indices of the outer cladding.

Fig. 3
Fig. 3

Theoretical and measured transmission spectra of a glass-pipe waveguide. (Inset) Cross section of the glass-pipe-waveguide sensor.

Fig. 4
Fig. 4

(a) Different spectral dip-positions of the resonant wave at 0.452THz in measurement for different volatile liquids. (b) Calculated transmission spectrum of the resonant wave at 0.452THz for different effective-core-refractive indices. (c) Relationship of effective-core-refractive indices and the dip frequencies for different volatile liquids. (d) Relationship of dip-frequency-shift and the estimated vapor densities.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n eff ( n hole 2 ρ)+[ n PVC 2 ( 1ρ )]
λ m =2d n cld 2 n cor 2 /m , m=1,2,3

Metrics