Abstract

The achievable spatial resolution and the contrast transfer function (CTF) are key parameters characterizing an X-ray microscope. We measured the spatial resolution and the contrast transfer function of the transmission X-ray microscope (TXM) at the electron storage ring BESSY II. The TXM uses the radiation of an undulator source and operates under partially coherent illumination conditions. For spatial resolutions down to 25 nm, our measurements of the CTF’s are in good agreement with theoretical CTF data for partial coherence. With higher resolution zone plate objectives, we measured a spatial resolution (half-pitch) of 11 nm in 1st and 3rd order of diffraction. However, with these objectives the stray light level increases significantly.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Proceedings of the 10th International Conference on X-ray Microscopy, ed. I. McNulty, C. Eyberger, B. Lai, AIP Conference Proceedings 1365 (2011).
  2. A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nat. Photonics 4(12), 840–848 (2010).
    [CrossRef]
  3. D. Weiß, G. Schneider, B. Niemann, P. Guttmann, D. Rudolph, and G. Schmahl, “Computed tomography of cryogenic biological specimens based on X-ray microscopic images,” Ultramicroscopy 84(3-4), 185–197 (2000).
    [CrossRef] [PubMed]
  4. G. Schneider, P. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J. B. Heymann, W. G. Müller, and J. G. McNally, “Three-dimensional cellular ultrastructure resolved by X-ray microscopy,” Nat. Methods 7(12), 985–987 (2010).
    [CrossRef] [PubMed]
  5. G. McDermott, M. A. Le Gros, C. G. Knoechel, M. Uchida, and C. A. Larabell, “Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging,” Trends Cell Biol. 19(11), 587–595 (2009).
    [CrossRef] [PubMed]
  6. P. Guttmann, C. Bittencourt, S. Rehbein, P. Umek, X. Ke, G. Van Tendeloo, C. P. Ewels, and G. Schneider, “Nanoscale spectroscopy with polarized X-rays by NEXAFS-TXM,” Nat. Photon. DOI: 10.1038/NPHOTON.2011.268 (2011).
    [CrossRef]
  7. C. Jacobsen, S. Wirick, G. Flynn, and C. Zimba, “Soft x-ray spectroscopy from image sequences with sub-100 nm spatial resolution,” J. Microsc. 197(2), 173–184 (2000).
    [CrossRef] [PubMed]
  8. W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy,” Opt. Express 17(20), 17669–17677 (2009).
    [CrossRef] [PubMed]
  9. S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103(11), 110801 (2009).
    [CrossRef] [PubMed]
  10. J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maaßdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
    [CrossRef] [PubMed]
  11. G. Schneider, “Cryo X-ray microscopy with high spatial resolution in amplitude and phase contrast,” Ultramicroscopy 75(2), 85–104 (1998).
    [CrossRef] [PubMed]
  12. S. Rehbein, P. Guttmann, S. Werner, G. Schneider, I. McNulty, C. Eyberger, and B. Lai, “Soft X-ray microscopy at HZB: Zone Plate Development and Imaging Using the Third Order of Diffraction,” AIP Conf. Proc. 1365, 32–37 (2011).
    [CrossRef]
  13. P. Guttmann, X. Zheng, M. Feser, S. Heim, W. Yun, and G. Schneider, “Ellipsoidal capillary condenser for the BESSY full-field x-ray microscope” J. Phys.: Conf Series 186 2 012064,1–3 (2009).
  14. R. Heintzmann, “Band-limit and appropriate sampling in microscopy” in Cell Biology: A Laboratory Handbook, Vol. 3. ed. C. Julio (Elsevier Academic Press), pp. 29–36 (2006).
  15. D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University Press, 1999)
  16. M. Bertilson, O. von Hofsten, H. M. Hertz, and U. Vogt, “Numerical model for tomographic image formation in transmission x-ray microscopy,” Opt. Express 19(12), 11578–11583 (2011).
    [CrossRef] [PubMed]

2011

S. Rehbein, P. Guttmann, S. Werner, G. Schneider, I. McNulty, C. Eyberger, and B. Lai, “Soft X-ray microscopy at HZB: Zone Plate Development and Imaging Using the Third Order of Diffraction,” AIP Conf. Proc. 1365, 32–37 (2011).
[CrossRef]

M. Bertilson, O. von Hofsten, H. M. Hertz, and U. Vogt, “Numerical model for tomographic image formation in transmission x-ray microscopy,” Opt. Express 19(12), 11578–11583 (2011).
[CrossRef] [PubMed]

2010

A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nat. Photonics 4(12), 840–848 (2010).
[CrossRef]

G. Schneider, P. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J. B. Heymann, W. G. Müller, and J. G. McNally, “Three-dimensional cellular ultrastructure resolved by X-ray microscopy,” Nat. Methods 7(12), 985–987 (2010).
[CrossRef] [PubMed]

2009

G. McDermott, M. A. Le Gros, C. G. Knoechel, M. Uchida, and C. A. Larabell, “Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging,” Trends Cell Biol. 19(11), 587–595 (2009).
[CrossRef] [PubMed]

W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy,” Opt. Express 17(20), 17669–17677 (2009).
[CrossRef] [PubMed]

S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103(11), 110801 (2009).
[CrossRef] [PubMed]

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maaßdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

2000

C. Jacobsen, S. Wirick, G. Flynn, and C. Zimba, “Soft x-ray spectroscopy from image sequences with sub-100 nm spatial resolution,” J. Microsc. 197(2), 173–184 (2000).
[CrossRef] [PubMed]

D. Weiß, G. Schneider, B. Niemann, P. Guttmann, D. Rudolph, and G. Schmahl, “Computed tomography of cryogenic biological specimens based on X-ray microscopic images,” Ultramicroscopy 84(3-4), 185–197 (2000).
[CrossRef] [PubMed]

1998

G. Schneider, “Cryo X-ray microscopy with high spatial resolution in amplitude and phase contrast,” Ultramicroscopy 75(2), 85–104 (1998).
[CrossRef] [PubMed]

Anderson, E. H.

Attwood, D.

A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nat. Photonics 4(12), 840–848 (2010).
[CrossRef]

Bertilson, M.

Chao, W.

David, C.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maaßdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

Eyberger, C.

S. Rehbein, P. Guttmann, S. Werner, G. Schneider, I. McNulty, C. Eyberger, and B. Lai, “Soft X-ray microscopy at HZB: Zone Plate Development and Imaging Using the Third Order of Diffraction,” AIP Conf. Proc. 1365, 32–37 (2011).
[CrossRef]

Fink, R. H.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maaßdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

Fischer, P.

Flynn, G.

C. Jacobsen, S. Wirick, G. Flynn, and C. Zimba, “Soft x-ray spectroscopy from image sequences with sub-100 nm spatial resolution,” J. Microsc. 197(2), 173–184 (2000).
[CrossRef] [PubMed]

Guttmann, P.

S. Rehbein, P. Guttmann, S. Werner, G. Schneider, I. McNulty, C. Eyberger, and B. Lai, “Soft X-ray microscopy at HZB: Zone Plate Development and Imaging Using the Third Order of Diffraction,” AIP Conf. Proc. 1365, 32–37 (2011).
[CrossRef]

G. Schneider, P. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J. B. Heymann, W. G. Müller, and J. G. McNally, “Three-dimensional cellular ultrastructure resolved by X-ray microscopy,” Nat. Methods 7(12), 985–987 (2010).
[CrossRef] [PubMed]

S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103(11), 110801 (2009).
[CrossRef] [PubMed]

D. Weiß, G. Schneider, B. Niemann, P. Guttmann, D. Rudolph, and G. Schmahl, “Computed tomography of cryogenic biological specimens based on X-ray microscopic images,” Ultramicroscopy 84(3-4), 185–197 (2000).
[CrossRef] [PubMed]

Heim, S.

G. Schneider, P. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J. B. Heymann, W. G. Müller, and J. G. McNally, “Three-dimensional cellular ultrastructure resolved by X-ray microscopy,” Nat. Methods 7(12), 985–987 (2010).
[CrossRef] [PubMed]

S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103(11), 110801 (2009).
[CrossRef] [PubMed]

Hertz, H. M.

Heymann, J. B.

G. Schneider, P. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J. B. Heymann, W. G. Müller, and J. G. McNally, “Three-dimensional cellular ultrastructure resolved by X-ray microscopy,” Nat. Methods 7(12), 985–987 (2010).
[CrossRef] [PubMed]

Jacobsen, C.

C. Jacobsen, S. Wirick, G. Flynn, and C. Zimba, “Soft x-ray spectroscopy from image sequences with sub-100 nm spatial resolution,” J. Microsc. 197(2), 173–184 (2000).
[CrossRef] [PubMed]

Jefimovs, K.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maaßdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

Kim, J.

Knoechel, C. G.

G. McDermott, M. A. Le Gros, C. G. Knoechel, M. Uchida, and C. A. Larabell, “Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging,” Trends Cell Biol. 19(11), 587–595 (2009).
[CrossRef] [PubMed]

Lai, B.

S. Rehbein, P. Guttmann, S. Werner, G. Schneider, I. McNulty, C. Eyberger, and B. Lai, “Soft X-ray microscopy at HZB: Zone Plate Development and Imaging Using the Third Order of Diffraction,” AIP Conf. Proc. 1365, 32–37 (2011).
[CrossRef]

Larabell, C. A.

G. McDermott, M. A. Le Gros, C. G. Knoechel, M. Uchida, and C. A. Larabell, “Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging,” Trends Cell Biol. 19(11), 587–595 (2009).
[CrossRef] [PubMed]

Le Gros, M. A.

G. McDermott, M. A. Le Gros, C. G. Knoechel, M. Uchida, and C. A. Larabell, “Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging,” Trends Cell Biol. 19(11), 587–595 (2009).
[CrossRef] [PubMed]

Maaßdorf, A.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maaßdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

McDermott, G.

G. McDermott, M. A. Le Gros, C. G. Knoechel, M. Uchida, and C. A. Larabell, “Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging,” Trends Cell Biol. 19(11), 587–595 (2009).
[CrossRef] [PubMed]

McNally, J. G.

G. Schneider, P. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J. B. Heymann, W. G. Müller, and J. G. McNally, “Three-dimensional cellular ultrastructure resolved by X-ray microscopy,” Nat. Methods 7(12), 985–987 (2010).
[CrossRef] [PubMed]

McNulty, I.

S. Rehbein, P. Guttmann, S. Werner, G. Schneider, I. McNulty, C. Eyberger, and B. Lai, “Soft X-ray microscopy at HZB: Zone Plate Development and Imaging Using the Third Order of Diffraction,” AIP Conf. Proc. 1365, 32–37 (2011).
[CrossRef]

Mueller, F.

G. Schneider, P. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J. B. Heymann, W. G. Müller, and J. G. McNally, “Three-dimensional cellular ultrastructure resolved by X-ray microscopy,” Nat. Methods 7(12), 985–987 (2010).
[CrossRef] [PubMed]

Müller, W. G.

G. Schneider, P. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J. B. Heymann, W. G. Müller, and J. G. McNally, “Three-dimensional cellular ultrastructure resolved by X-ray microscopy,” Nat. Methods 7(12), 985–987 (2010).
[CrossRef] [PubMed]

Nagashima, K.

G. Schneider, P. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J. B. Heymann, W. G. Müller, and J. G. McNally, “Three-dimensional cellular ultrastructure resolved by X-ray microscopy,” Nat. Methods 7(12), 985–987 (2010).
[CrossRef] [PubMed]

Niemann, B.

D. Weiß, G. Schneider, B. Niemann, P. Guttmann, D. Rudolph, and G. Schmahl, “Computed tomography of cryogenic biological specimens based on X-ray microscopic images,” Ultramicroscopy 84(3-4), 185–197 (2000).
[CrossRef] [PubMed]

Pilvi, T.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maaßdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

Raabe, J.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maaßdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

Rehbein, S.

S. Rehbein, P. Guttmann, S. Werner, G. Schneider, I. McNulty, C. Eyberger, and B. Lai, “Soft X-ray microscopy at HZB: Zone Plate Development and Imaging Using the Third Order of Diffraction,” AIP Conf. Proc. 1365, 32–37 (2011).
[CrossRef]

G. Schneider, P. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J. B. Heymann, W. G. Müller, and J. G. McNally, “Three-dimensional cellular ultrastructure resolved by X-ray microscopy,” Nat. Methods 7(12), 985–987 (2010).
[CrossRef] [PubMed]

S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103(11), 110801 (2009).
[CrossRef] [PubMed]

Rekawa, S.

Ritala, M.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maaßdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

Rudolph, D.

D. Weiß, G. Schneider, B. Niemann, P. Guttmann, D. Rudolph, and G. Schmahl, “Computed tomography of cryogenic biological specimens based on X-ray microscopic images,” Ultramicroscopy 84(3-4), 185–197 (2000).
[CrossRef] [PubMed]

Sakdinawat, A.

A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nat. Photonics 4(12), 840–848 (2010).
[CrossRef]

Schmahl, G.

D. Weiß, G. Schneider, B. Niemann, P. Guttmann, D. Rudolph, and G. Schmahl, “Computed tomography of cryogenic biological specimens based on X-ray microscopic images,” Ultramicroscopy 84(3-4), 185–197 (2000).
[CrossRef] [PubMed]

Schneider, G.

S. Rehbein, P. Guttmann, S. Werner, G. Schneider, I. McNulty, C. Eyberger, and B. Lai, “Soft X-ray microscopy at HZB: Zone Plate Development and Imaging Using the Third Order of Diffraction,” AIP Conf. Proc. 1365, 32–37 (2011).
[CrossRef]

G. Schneider, P. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J. B. Heymann, W. G. Müller, and J. G. McNally, “Three-dimensional cellular ultrastructure resolved by X-ray microscopy,” Nat. Methods 7(12), 985–987 (2010).
[CrossRef] [PubMed]

S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103(11), 110801 (2009).
[CrossRef] [PubMed]

D. Weiß, G. Schneider, B. Niemann, P. Guttmann, D. Rudolph, and G. Schmahl, “Computed tomography of cryogenic biological specimens based on X-ray microscopic images,” Ultramicroscopy 84(3-4), 185–197 (2000).
[CrossRef] [PubMed]

G. Schneider, “Cryo X-ray microscopy with high spatial resolution in amplitude and phase contrast,” Ultramicroscopy 75(2), 85–104 (1998).
[CrossRef] [PubMed]

Senoner, M.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maaßdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

Uchida, M.

G. McDermott, M. A. Le Gros, C. G. Knoechel, M. Uchida, and C. A. Larabell, “Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging,” Trends Cell Biol. 19(11), 587–595 (2009).
[CrossRef] [PubMed]

Vila-Comamala, J.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maaßdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

Vogt, U.

von Hofsten, O.

Weiß, D.

D. Weiß, G. Schneider, B. Niemann, P. Guttmann, D. Rudolph, and G. Schmahl, “Computed tomography of cryogenic biological specimens based on X-ray microscopic images,” Ultramicroscopy 84(3-4), 185–197 (2000).
[CrossRef] [PubMed]

Werner, S.

S. Rehbein, P. Guttmann, S. Werner, G. Schneider, I. McNulty, C. Eyberger, and B. Lai, “Soft X-ray microscopy at HZB: Zone Plate Development and Imaging Using the Third Order of Diffraction,” AIP Conf. Proc. 1365, 32–37 (2011).
[CrossRef]

S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103(11), 110801 (2009).
[CrossRef] [PubMed]

Wirick, S.

C. Jacobsen, S. Wirick, G. Flynn, and C. Zimba, “Soft x-ray spectroscopy from image sequences with sub-100 nm spatial resolution,” J. Microsc. 197(2), 173–184 (2000).
[CrossRef] [PubMed]

Zimba, C.

C. Jacobsen, S. Wirick, G. Flynn, and C. Zimba, “Soft x-ray spectroscopy from image sequences with sub-100 nm spatial resolution,” J. Microsc. 197(2), 173–184 (2000).
[CrossRef] [PubMed]

AIP Conf. Proc.

S. Rehbein, P. Guttmann, S. Werner, G. Schneider, I. McNulty, C. Eyberger, and B. Lai, “Soft X-ray microscopy at HZB: Zone Plate Development and Imaging Using the Third Order of Diffraction,” AIP Conf. Proc. 1365, 32–37 (2011).
[CrossRef]

J. Microsc.

C. Jacobsen, S. Wirick, G. Flynn, and C. Zimba, “Soft x-ray spectroscopy from image sequences with sub-100 nm spatial resolution,” J. Microsc. 197(2), 173–184 (2000).
[CrossRef] [PubMed]

Nat. Methods

G. Schneider, P. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J. B. Heymann, W. G. Müller, and J. G. McNally, “Three-dimensional cellular ultrastructure resolved by X-ray microscopy,” Nat. Methods 7(12), 985–987 (2010).
[CrossRef] [PubMed]

Nat. Photonics

A. Sakdinawat and D. Attwood, “Nanoscale X-ray imaging,” Nat. Photonics 4(12), 840–848 (2010).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider, “Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103(11), 110801 (2009).
[CrossRef] [PubMed]

Trends Cell Biol.

G. McDermott, M. A. Le Gros, C. G. Knoechel, M. Uchida, and C. A. Larabell, “Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging,” Trends Cell Biol. 19(11), 587–595 (2009).
[CrossRef] [PubMed]

Ultramicroscopy

D. Weiß, G. Schneider, B. Niemann, P. Guttmann, D. Rudolph, and G. Schmahl, “Computed tomography of cryogenic biological specimens based on X-ray microscopic images,” Ultramicroscopy 84(3-4), 185–197 (2000).
[CrossRef] [PubMed]

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maaßdorf, M. Ritala, and C. David, “Advanced thin film technology for ultrahigh resolution X-ray microscopy,” Ultramicroscopy 109(11), 1360–1364 (2009).
[CrossRef] [PubMed]

G. Schneider, “Cryo X-ray microscopy with high spatial resolution in amplitude and phase contrast,” Ultramicroscopy 75(2), 85–104 (1998).
[CrossRef] [PubMed]

Other

P. Guttmann, C. Bittencourt, S. Rehbein, P. Umek, X. Ke, G. Van Tendeloo, C. P. Ewels, and G. Schneider, “Nanoscale spectroscopy with polarized X-rays by NEXAFS-TXM,” Nat. Photon. DOI: 10.1038/NPHOTON.2011.268 (2011).
[CrossRef]

Proceedings of the 10th International Conference on X-ray Microscopy, ed. I. McNulty, C. Eyberger, B. Lai, AIP Conference Proceedings 1365 (2011).

P. Guttmann, X. Zheng, M. Feser, S. Heim, W. Yun, and G. Schneider, “Ellipsoidal capillary condenser for the BESSY full-field x-ray microscope” J. Phys.: Conf Series 186 2 012064,1–3 (2009).

R. Heintzmann, “Band-limit and appropriate sampling in microscopy” in Cell Biology: A Laboratory Handbook, Vol. 3. ed. C. Julio (Elsevier Academic Press), pp. 29–36 (2006).

D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University Press, 1999)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SEM images of the outermost parts of gold zone plates with different outermost zone widths drN = 25 nm, 20 nm, 17 nm and 15 nm as indicated in the micrographs.

Fig. 2
Fig. 2

X-ray optical set-up of the transmission X-ray microscope. The microscope is installed at an undulator soft X-ray source at the electron storage ring BESSY II. An elliptically shaped single reflection glass capillary is employed as condenser which collects the divergent radiation emerging from the exit slit of a spherical grating monochromator (SGM). The sample is imaged by the zone plate objective with high magnification onto a two-dimensional CCD detector.

Fig. 3
Fig. 3

X-ray microscope images of a Cr/B4C multilayer lamella containing structures with different half-pitch values. Images are taken at different photon energies using gold zone plate objectives with different outermost zone widths drN. The five micrographs on the left side are recorded by using the 1st order of diffraction of zone plates with drN = 25 nm, 20 nm, 17 nm and 15 nm. The three images on the right side are obtained using the 3rd order of diffraction of zone plates with drN = 40 nm (drN_eff = 40/3 nm = 13.3 nm), drN = 25 nm (drN_eff = 25/3 nm = 8.3 nm) and drN = 20 nm (drN_eff = 20/3 nm = 6.7 nm).

Fig. 4
Fig. 4

Minimum half-pitch values (indicated by circular dots) of the multilayer (ML) structures (see Fig. 3) resolved in the TXM with zone plates of different effective outermost zone widths drN_eff at different photon energies. The next smaller half-pitch values of the ML test sample which are not resolved are indicated by triangles. The gray squares display the calculated feature size (half-pitch) at which the image contrast equals zero.

Fig. 5
Fig. 5

Left: TXM image of a Siemens-star with 20 nm – 100 nm half-pitch gold structures (5.4 nm image pixel size). A zone plate objective with drN = 25 nm was used for imaging. The white semi-circle along structures with 55 nm half-pitch indicates the path used to obtain the profile plot, i.e. the intensity plot shown to the right. Right: Intensity plot along the indicated while semi-circle.

Fig. 6
Fig. 6

Measured and calculated CTF using different zone plate objectives. All measurements were performed at 510 eV photon energy.

Tables (1)

Tables Icon

Table 1 Parameters of fabricated zone plates shown in Fig. 1

Metrics