Abstract

In this paper, a model of the beam propagation is developed according to the physical properties of THz waves used in THz computed tomography (CT) scan imaging. This model is first included in an acquisition simulator to observe and estimate the impact of the Gaussian beam intensity profile on the projection sets. Second, the model is introduced in several inversion methods as a convolution filter to perform efficient tomographic reconstructions of simulated and real acquired objects. Results obtained with three reconstruction methods (BFP, SART and OSEM) are compared to the techniques proposed in this paper. We will demonstrate an increase of the overall quality and accuracy of the 3D reconstructions.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312–1314 (2002).
    [CrossRef]
  2. S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29, 247–256 (2003).
    [CrossRef]
  3. S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D: Appl. Phys. 37, R1–R36 (2004).
    [CrossRef]
  4. M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86, 221107 (2005).
    [CrossRef]
  5. X. Yin, B. W. H. Ng, B. Ferguson, and D. Abbott, “Wavelet based local tomographic image using terahertz techniques,” Digital Signal Process. 19, 750–763 (2009).
    [CrossRef]
  6. A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz-tomography techniques,” Appl. Phys. B 100, 151–158 (2010).
    [CrossRef]
  7. E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010).
    [CrossRef]
  8. S. Nadar, H. Videlier, D. Coquillat, F. Teppe, and M. Sakowicz, “Room temperature imaging at 1.63 and 2.54 THz with field effect transistor detectors,” J. Appl. Phys. 108, 054508 (2010).
    [CrossRef]
  9. A. El Fatimy, J.C. Delagnes, A. Younus, E. Nguema, F. Teppe, W. Knap, E. Abraham, and P. Mounaix, “Plasma wave field effect transistors as a resonant detector for imaging applications up to one terahertz for terahertz imaging”, Opt. Commun. 282(15), 3055–3058 (2009).
    [CrossRef]
  10. A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrasonic Imaging 6, 81–94 (1984).
    [CrossRef] [PubMed]
  11. L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113–122 (1982).
    [CrossRef] [PubMed]
  12. H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994).
    [CrossRef] [PubMed]
  13. A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J-P. Caumes, and E. Abraham, “3D millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” in Millimetre Wave and Terahertz Sensors and Technology III, K.A. Krapels and N.A. Salmon, eds., Proc. SPIE7837, 783709 (2010).
    [CrossRef]
  14. G. T. Herman, Image Reconstruction From Projections : The Fundamentals of Computerized Tomography (Academic Press, 1980).
  15. P. Toft, “The Radon Transform : Theory and Implementation,” Ph.D. thesis, Department of Mathematical Modelling, Section for Digital Signal Processing, Technical University of Denmark (1996).
  16. J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Ber. Ver. Sachs. Akad. Wiss. Leipzig, Math-Phys. Kl 69, 262–277 (1917). In German. An english translation can be found in S. R. Deans: The Radon Transform and Some of Its Applications.
  17. B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011).
    [CrossRef] [PubMed]
  18. R. Gordon, R. Bender, and G. T. Herman, “Algebraic Reconstruction Techniques (ART) for Three-dimensional Electron Microscopy and X-ray Photography,” J. Theor. Biol. 29, 471–481 (1970).
    [CrossRef] [PubMed]
  19. A. P. Dhawan, R. M. Rangayyan, and R. Gordon, “Image restoration by Wiener deconvolution in limited-view computed tomography,” Appl. Opt. 24, 4013–4020 (1985).
    [CrossRef] [PubMed]
  20. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment : From error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
    [CrossRef] [PubMed]

2011 (1)

2010 (3)

A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz-tomography techniques,” Appl. Phys. B 100, 151–158 (2010).
[CrossRef]

E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010).
[CrossRef]

S. Nadar, H. Videlier, D. Coquillat, F. Teppe, and M. Sakowicz, “Room temperature imaging at 1.63 and 2.54 THz with field effect transistor detectors,” J. Appl. Phys. 108, 054508 (2010).
[CrossRef]

2009 (2)

A. El Fatimy, J.C. Delagnes, A. Younus, E. Nguema, F. Teppe, W. Knap, E. Abraham, and P. Mounaix, “Plasma wave field effect transistors as a resonant detector for imaging applications up to one terahertz for terahertz imaging”, Opt. Commun. 282(15), 3055–3058 (2009).
[CrossRef]

X. Yin, B. W. H. Ng, B. Ferguson, and D. Abbott, “Wavelet based local tomographic image using terahertz techniques,” Digital Signal Process. 19, 750–763 (2009).
[CrossRef]

2005 (1)

M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86, 221107 (2005).
[CrossRef]

2004 (2)

S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D: Appl. Phys. 37, R1–R36 (2004).
[CrossRef]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment : From error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[CrossRef] [PubMed]

2003 (1)

S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29, 247–256 (2003).
[CrossRef]

2002 (1)

1994 (1)

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994).
[CrossRef] [PubMed]

1985 (1)

1984 (1)

A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrasonic Imaging 6, 81–94 (1984).
[CrossRef] [PubMed]

1982 (1)

L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113–122 (1982).
[CrossRef] [PubMed]

1970 (1)

R. Gordon, R. Bender, and G. T. Herman, “Algebraic Reconstruction Techniques (ART) for Three-dimensional Electron Microscopy and X-ray Photography,” J. Theor. Biol. 29, 471–481 (1970).
[CrossRef] [PubMed]

1917 (1)

J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Ber. Ver. Sachs. Akad. Wiss. Leipzig, Math-Phys. Kl 69, 262–277 (1917). In German. An english translation can be found in S. R. Deans: The Radon Transform and Some of Its Applications.

Abbot, D.

Abbott, D.

X. Yin, B. W. H. Ng, B. Ferguson, and D. Abbott, “Wavelet based local tomographic image using terahertz techniques,” Digital Signal Process. 19, 750–763 (2009).
[CrossRef]

S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29, 247–256 (2003).
[CrossRef]

Abraham, E.

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011).
[CrossRef] [PubMed]

E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010).
[CrossRef]

A. El Fatimy, J.C. Delagnes, A. Younus, E. Nguema, F. Teppe, W. Knap, E. Abraham, and P. Mounaix, “Plasma wave field effect transistors as a resonant detector for imaging applications up to one terahertz for terahertz imaging”, Opt. Commun. 282(15), 3055–3058 (2009).
[CrossRef]

A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J-P. Caumes, and E. Abraham, “3D millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” in Millimetre Wave and Terahertz Sensors and Technology III, K.A. Krapels and N.A. Salmon, eds., Proc. SPIE7837, 783709 (2010).
[CrossRef]

Aguerre, C.

E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010).
[CrossRef]

Andersen, A. H.

A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrasonic Imaging 6, 81–94 (1984).
[CrossRef] [PubMed]

Awad, M. M.

M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86, 221107 (2005).
[CrossRef]

Bender, R.

R. Gordon, R. Bender, and G. T. Herman, “Algebraic Reconstruction Techniques (ART) for Three-dimensional Electron Microscopy and X-ray Photography,” J. Theor. Biol. 29, 471–481 (1970).
[CrossRef] [PubMed]

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment : From error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[CrossRef] [PubMed]

Brahm, A.

A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz-tomography techniques,” Appl. Phys. B 100, 151–158 (2010).
[CrossRef]

Caumes, J-P.

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011).
[CrossRef] [PubMed]

A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J-P. Caumes, and E. Abraham, “3D millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” in Millimetre Wave and Terahertz Sensors and Technology III, K.A. Krapels and N.A. Salmon, eds., Proc. SPIE7837, 783709 (2010).
[CrossRef]

Chassagne, B.

Cheville, R. A.

M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86, 221107 (2005).
[CrossRef]

Coquillat, D.

S. Nadar, H. Videlier, D. Coquillat, F. Teppe, and M. Sakowicz, “Room temperature imaging at 1.63 and 2.54 THz with field effect transistor detectors,” J. Appl. Phys. 108, 054508 (2010).
[CrossRef]

Delagnes, J.C.

A. El Fatimy, J.C. Delagnes, A. Younus, E. Nguema, F. Teppe, W. Knap, E. Abraham, and P. Mounaix, “Plasma wave field effect transistors as a resonant detector for imaging applications up to one terahertz for terahertz imaging”, Opt. Commun. 282(15), 3055–3058 (2009).
[CrossRef]

Desbarats, P.

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011).
[CrossRef] [PubMed]

E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010).
[CrossRef]

A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J-P. Caumes, and E. Abraham, “3D millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” in Millimetre Wave and Terahertz Sensors and Technology III, K.A. Krapels and N.A. Salmon, eds., Proc. SPIE7837, 783709 (2010).
[CrossRef]

Dhawan, A. P.

El Fatimy, A.

A. El Fatimy, J.C. Delagnes, A. Younus, E. Nguema, F. Teppe, W. Knap, E. Abraham, and P. Mounaix, “Plasma wave field effect transistors as a resonant detector for imaging applications up to one terahertz for terahertz imaging”, Opt. Commun. 282(15), 3055–3058 (2009).
[CrossRef]

Ferguson, B.

X. Yin, B. W. H. Ng, B. Ferguson, and D. Abbott, “Wavelet based local tomographic image using terahertz techniques,” Digital Signal Process. 19, 750–763 (2009).
[CrossRef]

S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29, 247–256 (2003).
[CrossRef]

B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312–1314 (2002).
[CrossRef]

Gordon, R.

A. P. Dhawan, R. M. Rangayyan, and R. Gordon, “Image restoration by Wiener deconvolution in limited-view computed tomography,” Appl. Opt. 24, 4013–4020 (1985).
[CrossRef] [PubMed]

R. Gordon, R. Bender, and G. T. Herman, “Algebraic Reconstruction Techniques (ART) for Three-dimensional Electron Microscopy and X-ray Photography,” J. Theor. Biol. 29, 471–481 (1970).
[CrossRef] [PubMed]

Gray, D.

Herman, G. T.

R. Gordon, R. Bender, and G. T. Herman, “Algebraic Reconstruction Techniques (ART) for Three-dimensional Electron Microscopy and X-ray Photography,” J. Theor. Biol. 29, 471–481 (1970).
[CrossRef] [PubMed]

G. T. Herman, Image Reconstruction From Projections : The Fundamentals of Computerized Tomography (Academic Press, 1980).

Hudson, H. M.

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994).
[CrossRef] [PubMed]

Kak, A. C.

A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrasonic Imaging 6, 81–94 (1984).
[CrossRef] [PubMed]

Knap, W.

A. El Fatimy, J.C. Delagnes, A. Younus, E. Nguema, F. Teppe, W. Knap, E. Abraham, and P. Mounaix, “Plasma wave field effect transistors as a resonant detector for imaging applications up to one terahertz for terahertz imaging”, Opt. Commun. 282(15), 3055–3058 (2009).
[CrossRef]

Kunz, M.

A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz-tomography techniques,” Appl. Phys. B 100, 151–158 (2010).
[CrossRef]

Larkin, R. S.

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994).
[CrossRef] [PubMed]

Mounaix, P.

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011).
[CrossRef] [PubMed]

E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010).
[CrossRef]

A. El Fatimy, J.C. Delagnes, A. Younus, E. Nguema, F. Teppe, W. Knap, E. Abraham, and P. Mounaix, “Plasma wave field effect transistors as a resonant detector for imaging applications up to one terahertz for terahertz imaging”, Opt. Commun. 282(15), 3055–3058 (2009).
[CrossRef]

A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J-P. Caumes, and E. Abraham, “3D millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” in Millimetre Wave and Terahertz Sensors and Technology III, K.A. Krapels and N.A. Salmon, eds., Proc. SPIE7837, 783709 (2010).
[CrossRef]

Nadar, S.

S. Nadar, H. Videlier, D. Coquillat, F. Teppe, and M. Sakowicz, “Room temperature imaging at 1.63 and 2.54 THz with field effect transistor detectors,” J. Appl. Phys. 108, 054508 (2010).
[CrossRef]

Ng, B. W. H.

X. Yin, B. W. H. Ng, B. Ferguson, and D. Abbott, “Wavelet based local tomographic image using terahertz techniques,” Digital Signal Process. 19, 750–763 (2009).
[CrossRef]

Nguema, E.

A. El Fatimy, J.C. Delagnes, A. Younus, E. Nguema, F. Teppe, W. Knap, E. Abraham, and P. Mounaix, “Plasma wave field effect transistors as a resonant detector for imaging applications up to one terahertz for terahertz imaging”, Opt. Commun. 282(15), 3055–3058 (2009).
[CrossRef]

Notni, G.

A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz-tomography techniques,” Appl. Phys. B 100, 151–158 (2010).
[CrossRef]

Radon, J.

J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Ber. Ver. Sachs. Akad. Wiss. Leipzig, Math-Phys. Kl 69, 262–277 (1917). In German. An english translation can be found in S. R. Deans: The Radon Transform and Some of Its Applications.

Rangayyan, R. M.

Recur, B.

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011).
[CrossRef] [PubMed]

A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J-P. Caumes, and E. Abraham, “3D millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” in Millimetre Wave and Terahertz Sensors and Technology III, K.A. Krapels and N.A. Salmon, eds., Proc. SPIE7837, 783709 (2010).
[CrossRef]

Riehemann, S.

A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz-tomography techniques,” Appl. Phys. B 100, 151–158 (2010).
[CrossRef]

Sakowicz, M.

S. Nadar, H. Videlier, D. Coquillat, F. Teppe, and M. Sakowicz, “Room temperature imaging at 1.63 and 2.54 THz with field effect transistor detectors,” J. Appl. Phys. 108, 054508 (2010).
[CrossRef]

Salort, S.

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011).
[CrossRef] [PubMed]

A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J-P. Caumes, and E. Abraham, “3D millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” in Millimetre Wave and Terahertz Sensors and Technology III, K.A. Krapels and N.A. Salmon, eds., Proc. SPIE7837, 783709 (2010).
[CrossRef]

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment : From error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[CrossRef] [PubMed]

Shepp, L. A.

L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113–122 (1982).
[CrossRef] [PubMed]

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment : From error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[CrossRef] [PubMed]

Teppe, F.

S. Nadar, H. Videlier, D. Coquillat, F. Teppe, and M. Sakowicz, “Room temperature imaging at 1.63 and 2.54 THz with field effect transistor detectors,” J. Appl. Phys. 108, 054508 (2010).
[CrossRef]

A. El Fatimy, J.C. Delagnes, A. Younus, E. Nguema, F. Teppe, W. Knap, E. Abraham, and P. Mounaix, “Plasma wave field effect transistors as a resonant detector for imaging applications up to one terahertz for terahertz imaging”, Opt. Commun. 282(15), 3055–3058 (2009).
[CrossRef]

Toft, P.

P. Toft, “The Radon Transform : Theory and Implementation,” Ph.D. thesis, Department of Mathematical Modelling, Section for Digital Signal Processing, Technical University of Denmark (1996).

Tünnermann, A.

A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz-tomography techniques,” Appl. Phys. B 100, 151–158 (2010).
[CrossRef]

Vardi, Y.

L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113–122 (1982).
[CrossRef] [PubMed]

Videlier, H.

S. Nadar, H. Videlier, D. Coquillat, F. Teppe, and M. Sakowicz, “Room temperature imaging at 1.63 and 2.54 THz with field effect transistor detectors,” J. Appl. Phys. 108, 054508 (2010).
[CrossRef]

Wang, S.

S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D: Appl. Phys. 37, R1–R36 (2004).
[CrossRef]

S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29, 247–256 (2003).
[CrossRef]

B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312–1314 (2002).
[CrossRef]

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment : From error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[CrossRef] [PubMed]

Yin, X.

X. Yin, B. W. H. Ng, B. Ferguson, and D. Abbott, “Wavelet based local tomographic image using terahertz techniques,” Digital Signal Process. 19, 750–763 (2009).
[CrossRef]

Younus, A.

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011).
[CrossRef] [PubMed]

E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010).
[CrossRef]

A. El Fatimy, J.C. Delagnes, A. Younus, E. Nguema, F. Teppe, W. Knap, E. Abraham, and P. Mounaix, “Plasma wave field effect transistors as a resonant detector for imaging applications up to one terahertz for terahertz imaging”, Opt. Commun. 282(15), 3055–3058 (2009).
[CrossRef]

A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J-P. Caumes, and E. Abraham, “3D millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” in Millimetre Wave and Terahertz Sensors and Technology III, K.A. Krapels and N.A. Salmon, eds., Proc. SPIE7837, 783709 (2010).
[CrossRef]

Zhang, X. C.

S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D: Appl. Phys. 37, R1–R36 (2004).
[CrossRef]

S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29, 247–256 (2003).
[CrossRef]

B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312–1314 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz-tomography techniques,” Appl. Phys. B 100, 151–158 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86, 221107 (2005).
[CrossRef]

Ber. Ver. Sachs. Akad. Wiss. Leipzig, Math-Phys. Kl (1)

J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Ber. Ver. Sachs. Akad. Wiss. Leipzig, Math-Phys. Kl 69, 262–277 (1917). In German. An english translation can be found in S. R. Deans: The Radon Transform and Some of Its Applications.

Digital Signal Process. (1)

X. Yin, B. W. H. Ng, B. Ferguson, and D. Abbott, “Wavelet based local tomographic image using terahertz techniques,” Digital Signal Process. 19, 750–763 (2009).
[CrossRef]

IEEE Trans. Image Process. (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment : From error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (2)

L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113–122 (1982).
[CrossRef] [PubMed]

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

S. Nadar, H. Videlier, D. Coquillat, F. Teppe, and M. Sakowicz, “Room temperature imaging at 1.63 and 2.54 THz with field effect transistor detectors,” J. Appl. Phys. 108, 054508 (2010).
[CrossRef]

J. Biol. Phys. (1)

S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29, 247–256 (2003).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D: Appl. Phys. 37, R1–R36 (2004).
[CrossRef]

J. Theor. Biol. (1)

R. Gordon, R. Bender, and G. T. Herman, “Algebraic Reconstruction Techniques (ART) for Three-dimensional Electron Microscopy and X-ray Photography,” J. Theor. Biol. 29, 471–481 (1970).
[CrossRef] [PubMed]

Opt. Commun. (2)

A. El Fatimy, J.C. Delagnes, A. Younus, E. Nguema, F. Teppe, W. Knap, E. Abraham, and P. Mounaix, “Plasma wave field effect transistors as a resonant detector for imaging applications up to one terahertz for terahertz imaging”, Opt. Commun. 282(15), 3055–3058 (2009).
[CrossRef]

E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Ultrasonic Imaging (1)

A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrasonic Imaging 6, 81–94 (1984).
[CrossRef] [PubMed]

Other (3)

A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J-P. Caumes, and E. Abraham, “3D millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” in Millimetre Wave and Terahertz Sensors and Technology III, K.A. Krapels and N.A. Salmon, eds., Proc. SPIE7837, 783709 (2010).
[CrossRef]

G. T. Herman, Image Reconstruction From Projections : The Fundamentals of Computerized Tomography (Academic Press, 1980).

P. Toft, “The Radon Transform : Theory and Implementation,” Ph.D. thesis, Department of Mathematical Modelling, Section for Digital Signal Processing, Technical University of Denmark (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Experimental setup. L1 - L2 : HDPE lenses, PM1 - PM2 : Parabolic Mirrors. (b) 2D spatial profile of the THz beam waist at the sample position (240 GHz source) visualized with a pyroelectric detector.

Fig. 2
Fig. 2

(a) Medicine box acquired at the indicated cross-section. (b) Corresponding sinogram with Nθ = 18 and Nρ = 46. (c) BFP, (d) SART, (e) OSEM results.

Fig. 3
Fig. 3

Iterative reconstruction process.

Fig. 4
Fig. 4

(a) Propagation beam acquired along the Z-axis with a 5 mm step. (b) Beam propagation along the Z-axis.

Fig. 5
Fig. 5

Simulated propagation of the beam for a 240 GHz source (Intensity (a.u), position in meters), FWHM = 2 mm at beam waist according to previously measured beam.

Fig. 6
Fig. 6

Simulated acquisition of a projection θ in 2D.

Fig. 7
Fig. 7

(a) Object composed of four metallic bars (two bars diameter 10mm on the top and on the left, one bar diameter 12mm on the right and one bar diameter 8mm on the bottom), (b) Synthetic model of the object.

Fig. 8
Fig. 8

(a) Usual Radon acquisition from synthetic model, (b) Simulated acquisition using Gaussian beam convolutions of the synthetic model, (c) Acquisition of the real object. Grey scale indicates absorption rate (full absorption in white, and background air absorption tends to 0).

Fig. 9
Fig. 9

BFP algorithm including the deconvolution before the retroprojection step.

Fig. 10
Fig. 10

(a)(b)(c) BFP, SART, OSEM results from the ideal sinogram Fig. 8(a). (d)(e)(f), BFP, SART, OSEM from simulated Gaussian beam acquisition 8(b). (g)(h)(i) BFP, SART and OSEM reconstructions from the same sinogram using optimized algorithms.

Fig. 11
Fig. 11

Top bar profiles reconstructed with BFP (a), SART (b) and OSEM (c) : from the theoretical sinogram (Green) and from the simulated Gaussian acquisition with usual (blue) and optimized (Violet) methods. (d) : Top bar profiles reconstructed with the optimized methods. (Green) : BFP. (Blue) : SART. (Violet) : OSEM. (Red) : Theorical signal.

Fig. 12
Fig. 12

(a)(b)(c) Usual BFP, SART and OSEM results from the real acquisition Fig. 8(d). (d)(e)(f) Optimized BFP, SART and OSEM results.

Fig. 13
Fig. 13

3D reconstructions of the medicine box using usual BFP (a), SART (b) and OSEM (c) compared to the optimized BFP (d), SART (e) and OSEM (f) methods.

Fig. 14
Fig. 14

Estimation of the contact area between the tablet and the medicine box (red pixels) on the images obtained with standard BFP (a), SART (b) and OSEM (c) in one hand and optimized BFP (d), SART (e) and OSEM (f) on the other hand.

Tables (1)

Tables Icon

Table 1 Comparison between reconstruction from sinogram acquired through a Gaussian beam and the original domain. It relates on the quality rate of each method to reconstruct the original image.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

θ ( ρ ) = f ( x , y ) δ ( ρ x cos θ y sin θ ) d x d y
I k , s ( i , j ) = I k , s 1 ( i , j ) + λ i ρ = 0 N ρ 1 A ( θ , ρ ) , ( i , j ) [ θ s ( ρ ) R θ s k ( ρ ) D θ s ( ρ ) ] i ρ = 0 N ρ 1 A ( θ , ρ ) , ( i , j )
w ( z ) = w 0 1 + ( z z R ) 2
I ( r , z ) = I 0 ( w 0 w ( z ) ) 2 exp ( 2 r 2 w 2 ( z ) )
ϕ = 0 ( ρ ) = f θ ( x , y = ρ ) * I ( x x 0 , ρ y 0 ) δ ( ρ x cos ϕ ) d x
S S I M ( I , J ) = l ( I , j ) c ( I , J ) r ( I , J )

Metrics