Abstract

We report on a sub-cellular resolution photoacoustic microscopy (PAM) system that employs microcavity synchronous parallel acquisition technique for detecting the weak photoacoustic (PA) signal excited by a modulated continuous wave (CW) laser source. The gas microcavity transducer is developed based on the fact that the bulk modulus of the gas is far less than the solid and the change of the air-gas pressure is inversely proportional to the gas volume, making it extremely sensitive to the tiny PA pressure wave. Besides, considering PA wave expends in various directions, detecting PA signals from different position and adding them together can increase the detecting sensitivity and the signal to noise ratio(SNR), then we employs two microphone to acquire PA wave synchronously and parallelly. We show that the developed PAM system is capable of label-free imaging and differentiating of the hemoglobin distribution within single red blood cells under normal and anemia conditions.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [CrossRef] [PubMed]
  2. D. K. Yao, K. Maslov, K. K. Shung, Q. F. Zhou, and L. V. Wang, “In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA,” Opt. Lett. 35(24), 4139–4141 (2010).
    [CrossRef] [PubMed]
  3. C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010).
    [CrossRef] [PubMed]
  4. L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett. 36(7), 1236–1238 (2011).
    [CrossRef] [PubMed]
  5. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009).
    [CrossRef] [PubMed]
  6. C. H. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93(3), 033902 (2008).
    [CrossRef] [PubMed]
  7. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23(8), 648–650 (1998).
    [CrossRef] [PubMed]
  8. Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
    [CrossRef] [PubMed]
  9. Z. L. Tan, Z. L. Tang, Y. B. Wu, Y. F. Liao, W. Dong, and L. N. Guo, “Multimodal subcellular imaging with microcavity photoacoustic transducer,” Opt. Express 19(3), 2426–2431 (2011).
    [CrossRef] [PubMed]
  10. R. S. Quimby, “Real?time photoacoustic microscopy,” Appl. Phys. Lett. 45(10), 1037 (1984).
    [CrossRef]
  11. K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13(2), 024006 (2008).
    [CrossRef] [PubMed]
  12. A. Rosencwaig and A. J. Gersho, “Photoacoustic effect with solids: a theoretical treatment,” Science 190, 556–557 (1975).
  13. A. Rosencwaig and A. J. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47(1), 64–69 (1976).
    [CrossRef]
  14. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, 1980), Chap.9.

2011

2010

2009

2008

C. H. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93(3), 033902 (2008).
[CrossRef] [PubMed]

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13(2), 024006 (2008).
[CrossRef] [PubMed]

1998

1984

R. S. Quimby, “Real?time photoacoustic microscopy,” Appl. Phys. Lett. 45(10), 1037 (1984).
[CrossRef]

1976

A. Rosencwaig and A. J. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47(1), 64–69 (1976).
[CrossRef]

1975

A. Rosencwaig and A. J. Gersho, “Photoacoustic effect with solids: a theoretical treatment,” Science 190, 556–557 (1975).

de Mul, F. F. M.

Dekker, A.

Dong, W.

Gersho, A. J.

A. Rosencwaig and A. J. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47(1), 64–69 (1976).
[CrossRef]

A. Rosencwaig and A. J. Gersho, “Photoacoustic effect with solids: a theoretical treatment,” Science 190, 556–557 (1975).

Guo, L. N.

Hoelen, C. G. A.

Jiao, S.

Lao, Y. Q.

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

Li, C. H.

C. H. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93(3), 033902 (2008).
[CrossRef] [PubMed]

Liao, Y. F.

Maslov, K.

Pongers, R.

Puliafito, C. A.

Quimby, R. S.

R. S. Quimby, “Real?time photoacoustic microscopy,” Appl. Phys. Lett. 45(10), 1037 (1984).
[CrossRef]

Rosencwaig, A.

A. Rosencwaig and A. J. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47(1), 64–69 (1976).
[CrossRef]

A. Rosencwaig and A. J. Gersho, “Photoacoustic effect with solids: a theoretical treatment,” Science 190, 556–557 (1975).

Shung, K. K.

Song, L.

Tan, Z. L.

Tang, Z. L.

Wang, L. V.

L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett. 36(7), 1236–1238 (2011).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

D. K. Yao, K. Maslov, K. K. Shung, Q. F. Zhou, and L. V. Wang, “In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA,” Opt. Lett. 35(24), 4139–4141 (2010).
[CrossRef] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[CrossRef] [PubMed]

C. H. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93(3), 033902 (2008).
[CrossRef] [PubMed]

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13(2), 024006 (2008).
[CrossRef] [PubMed]

Wu, Y. B.

Xiang, L. Z.

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

Xie, Z.

Xing, D.

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

Yang, S. H.

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

Yao, D. K.

Zhang, C.

Zhang, H. F.

Zhou, Q. F.

Appl. Phys. Lett.

C. H. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93(3), 033902 (2008).
[CrossRef] [PubMed]

R. S. Quimby, “Real?time photoacoustic microscopy,” Appl. Phys. Lett. 45(10), 1037 (1984).
[CrossRef]

J. Appl. Phys.

A. Rosencwaig and A. J. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47(1), 64–69 (1976).
[CrossRef]

J. Biomed. Opt.

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt. 13(2), 024006 (2008).
[CrossRef] [PubMed]

Nat. Photonics

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

Science

A. Rosencwaig and A. J. Gersho, “Photoacoustic effect with solids: a theoretical treatment,” Science 190, 556–557 (1975).

Other

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, 1980), Chap.9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Principle of multi-sensors microcavity PA transducer

Fig. 2
Fig. 2

(a)Realization of multi-sensors microcavity PA transducer. (b) Schematic of the experimental setup of CW laser PAM.

Fig. 3
Fig. 3

Results from the normal red blood cells obtained by PAM with (a) and without (b) microcavity synchronous parallel acquisition technique.

Fig. 4
Fig. 4

Results obtained from the serious and mild anemia RBCs by the use of PAM [(a) and (e)] and OM [(c) and (g)], respectively. To the right of the individual images are the plots of the measured signals along the central line of the marked cells.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P V γ =const
δP(t)= γ P 0 V 0 δV
δV(t)=δV'(t)=Sδx(t)
δx(t)=2πμ' ϕ ¯ (t) T 0
δP(t)= 2πμ'γ P 0 S T 0 ϕ ¯ (t) V 0

Metrics