Abstract

We demonstrate that the interaction of intense femtosecond light on a plain solid substrate can be substantially altered by a few micron layer coating of bacterial cells, live or dead. Using E. Coli cells, we show that at an intensity of 1016W cm−2, the bremsstraahlung hard x-ray emission (up to 300 keV), is increased by more than two orders of magnitude as compared to a plain glass slab. Particle-in-cell simulations carried out by modeling the bacterial cells as ellipsoidal particles show that the hot electron generation is indeed enhanced by the presence of microstructures. This new methodology should pave way for using microbiological systems of varied shapes to control intense laser produced plasmas for EUV/x-ray generation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Giulietti and L. A. Gizzi, “X-ray emission from laser-produced plasmas,” Riv. del Nouv. Cim. 21, 1–93 (1998).
    [CrossRef]
  2. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).
    [CrossRef] [PubMed]
  3. C. -M. Ma, I. Veltchev, E. Fourkal, J. S. Li, W. Luo, J. Fan, T. Lin, and A. Pollack, “Development of a laser-driven proton accelerator for cancer therapy,” Laser Phys.,  16, 639–646 (2006).
    [CrossRef]
  4. M. Anand, S. Kahaly, G. Ravindra Kumar, M. Krishnamurthy, A. S. Sandhu, and P. Gibbon, “Enhanced hard x-ray emission from microdroplet preplasma,” Appl. Phys. Lett. 88, 18111 (2006).
  5. P. Gibbon, Short pulse laser interactions with matter (Imperial College Press, London, 2005).
  6. Y. Glinec, J. Faure, L. Le Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003–025007 (2004).
    [CrossRef]
  7. M. Al-Rabban, M. Richardson, M. Scott, F. Gilleron, M. Poirier, and T. J. Blenski, EUV sources for lithography, SPIE Press, 299–337 (2006).
  8. P. P. Rajeev, P. Taneja, P. Ayyub, A. S. Sandhu, and G. Ravindra Kumar, “Metal nanoplasmas as bright sources of hard x-ray pulses,” Phys. Rev. Lett. 90, 15003 (2003).
    [CrossRef]
  9. S. Kahaly, S. K. Yadav, W. M. Yang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. Ravindra Kumar, “Near-complete absorption of Intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
    [CrossRef] [PubMed]
  10. K. E. Drexler, Nanosystems (Wiley, John & Sons, Inc., 1992).
  11. C. L. Rettig, W. M. Roquemore, and J. R. Gord, “Efficiency and scaling of an ultrashort-pulse high-repetition-rate laser-driven X-ray source,” App. Phys. B,  93, 365–372 (2008).
    [CrossRef]
  12. A. S. Sandhu, G. R. Kumar, S. Sengupta, A. Das, and P. K. Kaw, “Laser-pulse-induced second-harmonic and hard x-ray emission: role of plasma-wave breaking,” Phys. Rev. Lett. 95, 025005 (2005).
    [CrossRef] [PubMed]
  13. D. W. Forslund, J. M. Kindel, and K. Lee, “Theory of hot-electron spectra at high laser intensity,” Phys. Rev. Lett. 39, 284–288 (1977).
    [CrossRef]
  14. G. Kulcsár, D. AlMawlawi, F. W. Budnik, P. R. Herman, M. Moskovits, L. Zhao, and R. S. Marjoribanks, Intense picosecond x-ray pulses from laser plasmas by use of nanostructured “velvet” targetsPhys. Rev. Lett. 84, 5149–5152 (2000).
    [CrossRef] [PubMed]
  15. M. Kundu and D. Bauer, “Nonlinear resonance absorption in the laser-cluster interaction,” Phys. Rev. Lett. 96, 123401 (2006).
    [CrossRef] [PubMed]
  16. http://cpicanada.org/CCDB/cgi-bin/STAT_NEW.cgi .
  17. M. A. Porras, “Diffraction effect in few-cycle optical pulses,” Phys. Rev. E 65, 026606 (2002).
    [CrossRef]
  18. Z. Yan, Y. K. Ho, P. X. Wang, J. F. Hua, Z. Chen, and L. Wu, “Accurate description of ultra-short tightly focused Gaussian laser pulses and vacuum laser acceleration,” App. Phys. B 81, 813–819 (2005).
    [CrossRef]
  19. M. T. Madigan, J. M. Martinko, and D. A. Stahl, Brock biology of microorganisms (Pearson Prentice Hall, New Jersey, 2005).

2008

S. Kahaly, S. K. Yadav, W. M. Yang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. Ravindra Kumar, “Near-complete absorption of Intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[CrossRef] [PubMed]

C. L. Rettig, W. M. Roquemore, and J. R. Gord, “Efficiency and scaling of an ultrashort-pulse high-repetition-rate laser-driven X-ray source,” App. Phys. B,  93, 365–372 (2008).
[CrossRef]

2006

C. -M. Ma, I. Veltchev, E. Fourkal, J. S. Li, W. Luo, J. Fan, T. Lin, and A. Pollack, “Development of a laser-driven proton accelerator for cancer therapy,” Laser Phys.,  16, 639–646 (2006).
[CrossRef]

M. Kundu and D. Bauer, “Nonlinear resonance absorption in the laser-cluster interaction,” Phys. Rev. Lett. 96, 123401 (2006).
[CrossRef] [PubMed]

2005

Z. Yan, Y. K. Ho, P. X. Wang, J. F. Hua, Z. Chen, and L. Wu, “Accurate description of ultra-short tightly focused Gaussian laser pulses and vacuum laser acceleration,” App. Phys. B 81, 813–819 (2005).
[CrossRef]

A. S. Sandhu, G. R. Kumar, S. Sengupta, A. Das, and P. K. Kaw, “Laser-pulse-induced second-harmonic and hard x-ray emission: role of plasma-wave breaking,” Phys. Rev. Lett. 95, 025005 (2005).
[CrossRef] [PubMed]

2004

Y. Glinec, J. Faure, L. Le Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003–025007 (2004).
[CrossRef]

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).
[CrossRef] [PubMed]

2003

P. P. Rajeev, P. Taneja, P. Ayyub, A. S. Sandhu, and G. Ravindra Kumar, “Metal nanoplasmas as bright sources of hard x-ray pulses,” Phys. Rev. Lett. 90, 15003 (2003).
[CrossRef]

2002

M. A. Porras, “Diffraction effect in few-cycle optical pulses,” Phys. Rev. E 65, 026606 (2002).
[CrossRef]

2000

G. Kulcsár, D. AlMawlawi, F. W. Budnik, P. R. Herman, M. Moskovits, L. Zhao, and R. S. Marjoribanks, Intense picosecond x-ray pulses from laser plasmas by use of nanostructured “velvet” targetsPhys. Rev. Lett. 84, 5149–5152 (2000).
[CrossRef] [PubMed]

1998

D. Giulietti and L. A. Gizzi, “X-ray emission from laser-produced plasmas,” Riv. del Nouv. Cim. 21, 1–93 (1998).
[CrossRef]

1977

D. W. Forslund, J. M. Kindel, and K. Lee, “Theory of hot-electron spectra at high laser intensity,” Phys. Rev. Lett. 39, 284–288 (1977).
[CrossRef]

AlMawlawi, D.

G. Kulcsár, D. AlMawlawi, F. W. Budnik, P. R. Herman, M. Moskovits, L. Zhao, and R. S. Marjoribanks, Intense picosecond x-ray pulses from laser plasmas by use of nanostructured “velvet” targetsPhys. Rev. Lett. 84, 5149–5152 (2000).
[CrossRef] [PubMed]

Al-Rabban, M.

M. Al-Rabban, M. Richardson, M. Scott, F. Gilleron, M. Poirier, and T. J. Blenski, EUV sources for lithography, SPIE Press, 299–337 (2006).

Anand, M.

M. Anand, S. Kahaly, G. Ravindra Kumar, M. Krishnamurthy, A. S. Sandhu, and P. Gibbon, “Enhanced hard x-ray emission from microdroplet preplasma,” Appl. Phys. Lett. 88, 18111 (2006).

Ayyub, P.

P. P. Rajeev, P. Taneja, P. Ayyub, A. S. Sandhu, and G. Ravindra Kumar, “Metal nanoplasmas as bright sources of hard x-ray pulses,” Phys. Rev. Lett. 90, 15003 (2003).
[CrossRef]

Bauer, D.

M. Kundu and D. Bauer, “Nonlinear resonance absorption in the laser-cluster interaction,” Phys. Rev. Lett. 96, 123401 (2006).
[CrossRef] [PubMed]

Blenski, T. J.

M. Al-Rabban, M. Richardson, M. Scott, F. Gilleron, M. Poirier, and T. J. Blenski, EUV sources for lithography, SPIE Press, 299–337 (2006).

Budnik, F. W.

G. Kulcsár, D. AlMawlawi, F. W. Budnik, P. R. Herman, M. Moskovits, L. Zhao, and R. S. Marjoribanks, Intense picosecond x-ray pulses from laser plasmas by use of nanostructured “velvet” targetsPhys. Rev. Lett. 84, 5149–5152 (2000).
[CrossRef] [PubMed]

Burgy, F.

Y. Glinec, J. Faure, L. Le Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003–025007 (2004).
[CrossRef]

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).
[CrossRef] [PubMed]

Chen, Z.

Z. Yan, Y. K. Ho, P. X. Wang, J. F. Hua, Z. Chen, and L. Wu, “Accurate description of ultra-short tightly focused Gaussian laser pulses and vacuum laser acceleration,” App. Phys. B 81, 813–819 (2005).
[CrossRef]

Darbon, S.

Y. Glinec, J. Faure, L. Le Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003–025007 (2004).
[CrossRef]

Das, A.

S. Kahaly, S. K. Yadav, W. M. Yang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. Ravindra Kumar, “Near-complete absorption of Intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[CrossRef] [PubMed]

A. S. Sandhu, G. R. Kumar, S. Sengupta, A. Das, and P. K. Kaw, “Laser-pulse-induced second-harmonic and hard x-ray emission: role of plasma-wave breaking,” Phys. Rev. Lett. 95, 025005 (2005).
[CrossRef] [PubMed]

Drexler, K. E.

K. E. Drexler, Nanosystems (Wiley, John & Sons, Inc., 1992).

Fan, J.

C. -M. Ma, I. Veltchev, E. Fourkal, J. S. Li, W. Luo, J. Fan, T. Lin, and A. Pollack, “Development of a laser-driven proton accelerator for cancer therapy,” Laser Phys.,  16, 639–646 (2006).
[CrossRef]

Faure, J.

Y. Glinec, J. Faure, L. Le Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003–025007 (2004).
[CrossRef]

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).
[CrossRef] [PubMed]

Forslund, D. W.

D. W. Forslund, J. M. Kindel, and K. Lee, “Theory of hot-electron spectra at high laser intensity,” Phys. Rev. Lett. 39, 284–288 (1977).
[CrossRef]

Fourkal, E.

C. -M. Ma, I. Veltchev, E. Fourkal, J. S. Li, W. Luo, J. Fan, T. Lin, and A. Pollack, “Development of a laser-driven proton accelerator for cancer therapy,” Laser Phys.,  16, 639–646 (2006).
[CrossRef]

Gibbon, P.

M. Anand, S. Kahaly, G. Ravindra Kumar, M. Krishnamurthy, A. S. Sandhu, and P. Gibbon, “Enhanced hard x-ray emission from microdroplet preplasma,” Appl. Phys. Lett. 88, 18111 (2006).

P. Gibbon, Short pulse laser interactions with matter (Imperial College Press, London, 2005).

Gilleron, F.

M. Al-Rabban, M. Richardson, M. Scott, F. Gilleron, M. Poirier, and T. J. Blenski, EUV sources for lithography, SPIE Press, 299–337 (2006).

Giulietti, D.

D. Giulietti and L. A. Gizzi, “X-ray emission from laser-produced plasmas,” Riv. del Nouv. Cim. 21, 1–93 (1998).
[CrossRef]

Gizzi, L. A.

D. Giulietti and L. A. Gizzi, “X-ray emission from laser-produced plasmas,” Riv. del Nouv. Cim. 21, 1–93 (1998).
[CrossRef]

Glinec, Y.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).
[CrossRef] [PubMed]

Y. Glinec, J. Faure, L. Le Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003–025007 (2004).
[CrossRef]

Gord, J. R.

C. L. Rettig, W. M. Roquemore, and J. R. Gord, “Efficiency and scaling of an ultrashort-pulse high-repetition-rate laser-driven X-ray source,” App. Phys. B,  93, 365–372 (2008).
[CrossRef]

Gordienko, S.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).
[CrossRef] [PubMed]

Herman, P. R.

G. Kulcsár, D. AlMawlawi, F. W. Budnik, P. R. Herman, M. Moskovits, L. Zhao, and R. S. Marjoribanks, Intense picosecond x-ray pulses from laser plasmas by use of nanostructured “velvet” targetsPhys. Rev. Lett. 84, 5149–5152 (2000).
[CrossRef] [PubMed]

Ho, Y. K.

Z. Yan, Y. K. Ho, P. X. Wang, J. F. Hua, Z. Chen, and L. Wu, “Accurate description of ultra-short tightly focused Gaussian laser pulses and vacuum laser acceleration,” App. Phys. B 81, 813–819 (2005).
[CrossRef]

Hosokai, T.

Y. Glinec, J. Faure, L. Le Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003–025007 (2004).
[CrossRef]

Hua, J. F.

Z. Yan, Y. K. Ho, P. X. Wang, J. F. Hua, Z. Chen, and L. Wu, “Accurate description of ultra-short tightly focused Gaussian laser pulses and vacuum laser acceleration,” App. Phys. B 81, 813–819 (2005).
[CrossRef]

Kahaly, S.

S. Kahaly, S. K. Yadav, W. M. Yang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. Ravindra Kumar, “Near-complete absorption of Intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[CrossRef] [PubMed]

M. Anand, S. Kahaly, G. Ravindra Kumar, M. Krishnamurthy, A. S. Sandhu, and P. Gibbon, “Enhanced hard x-ray emission from microdroplet preplasma,” Appl. Phys. Lett. 88, 18111 (2006).

Kaw, P. K.

S. Kahaly, S. K. Yadav, W. M. Yang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. Ravindra Kumar, “Near-complete absorption of Intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[CrossRef] [PubMed]

A. S. Sandhu, G. R. Kumar, S. Sengupta, A. Das, and P. K. Kaw, “Laser-pulse-induced second-harmonic and hard x-ray emission: role of plasma-wave breaking,” Phys. Rev. Lett. 95, 025005 (2005).
[CrossRef] [PubMed]

Kindel, J. M.

D. W. Forslund, J. M. Kindel, and K. Lee, “Theory of hot-electron spectra at high laser intensity,” Phys. Rev. Lett. 39, 284–288 (1977).
[CrossRef]

Kiselev, S.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).
[CrossRef] [PubMed]

Krishnamurthy, M.

M. Anand, S. Kahaly, G. Ravindra Kumar, M. Krishnamurthy, A. S. Sandhu, and P. Gibbon, “Enhanced hard x-ray emission from microdroplet preplasma,” Appl. Phys. Lett. 88, 18111 (2006).

Kulcsár, G.

G. Kulcsár, D. AlMawlawi, F. W. Budnik, P. R. Herman, M. Moskovits, L. Zhao, and R. S. Marjoribanks, Intense picosecond x-ray pulses from laser plasmas by use of nanostructured “velvet” targetsPhys. Rev. Lett. 84, 5149–5152 (2000).
[CrossRef] [PubMed]

Kumar, G. R.

A. S. Sandhu, G. R. Kumar, S. Sengupta, A. Das, and P. K. Kaw, “Laser-pulse-induced second-harmonic and hard x-ray emission: role of plasma-wave breaking,” Phys. Rev. Lett. 95, 025005 (2005).
[CrossRef] [PubMed]

Kundu, M.

M. Kundu and D. Bauer, “Nonlinear resonance absorption in the laser-cluster interaction,” Phys. Rev. Lett. 96, 123401 (2006).
[CrossRef] [PubMed]

Le Dain, L.

Y. Glinec, J. Faure, L. Le Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003–025007 (2004).
[CrossRef]

Lee, K.

D. W. Forslund, J. M. Kindel, and K. Lee, “Theory of hot-electron spectra at high laser intensity,” Phys. Rev. Lett. 39, 284–288 (1977).
[CrossRef]

Lefebvre, E.

Y. Glinec, J. Faure, L. Le Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003–025007 (2004).
[CrossRef]

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).
[CrossRef] [PubMed]

Li, J. S.

C. -M. Ma, I. Veltchev, E. Fourkal, J. S. Li, W. Luo, J. Fan, T. Lin, and A. Pollack, “Development of a laser-driven proton accelerator for cancer therapy,” Laser Phys.,  16, 639–646 (2006).
[CrossRef]

Lin, T.

C. -M. Ma, I. Veltchev, E. Fourkal, J. S. Li, W. Luo, J. Fan, T. Lin, and A. Pollack, “Development of a laser-driven proton accelerator for cancer therapy,” Laser Phys.,  16, 639–646 (2006).
[CrossRef]

Luo, W.

C. -M. Ma, I. Veltchev, E. Fourkal, J. S. Li, W. Luo, J. Fan, T. Lin, and A. Pollack, “Development of a laser-driven proton accelerator for cancer therapy,” Laser Phys.,  16, 639–646 (2006).
[CrossRef]

Ma, C. -M.

C. -M. Ma, I. Veltchev, E. Fourkal, J. S. Li, W. Luo, J. Fan, T. Lin, and A. Pollack, “Development of a laser-driven proton accelerator for cancer therapy,” Laser Phys.,  16, 639–646 (2006).
[CrossRef]

Madigan, M. T.

M. T. Madigan, J. M. Martinko, and D. A. Stahl, Brock biology of microorganisms (Pearson Prentice Hall, New Jersey, 2005).

Malka, V.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).
[CrossRef] [PubMed]

Y. Glinec, J. Faure, L. Le Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003–025007 (2004).
[CrossRef]

Marjoribanks, R. S.

G. Kulcsár, D. AlMawlawi, F. W. Budnik, P. R. Herman, M. Moskovits, L. Zhao, and R. S. Marjoribanks, Intense picosecond x-ray pulses from laser plasmas by use of nanostructured “velvet” targetsPhys. Rev. Lett. 84, 5149–5152 (2000).
[CrossRef] [PubMed]

Martinko, J. M.

M. T. Madigan, J. M. Martinko, and D. A. Stahl, Brock biology of microorganisms (Pearson Prentice Hall, New Jersey, 2005).

Mercier, B.

Y. Glinec, J. Faure, L. Le Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003–025007 (2004).
[CrossRef]

Moskovits, M.

G. Kulcsár, D. AlMawlawi, F. W. Budnik, P. R. Herman, M. Moskovits, L. Zhao, and R. S. Marjoribanks, Intense picosecond x-ray pulses from laser plasmas by use of nanostructured “velvet” targetsPhys. Rev. Lett. 84, 5149–5152 (2000).
[CrossRef] [PubMed]

Poirier, M.

M. Al-Rabban, M. Richardson, M. Scott, F. Gilleron, M. Poirier, and T. J. Blenski, EUV sources for lithography, SPIE Press, 299–337 (2006).

Pollack, A.

C. -M. Ma, I. Veltchev, E. Fourkal, J. S. Li, W. Luo, J. Fan, T. Lin, and A. Pollack, “Development of a laser-driven proton accelerator for cancer therapy,” Laser Phys.,  16, 639–646 (2006).
[CrossRef]

Porras, M. A.

M. A. Porras, “Diffraction effect in few-cycle optical pulses,” Phys. Rev. E 65, 026606 (2002).
[CrossRef]

Pukhov, A.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).
[CrossRef] [PubMed]

Rajeev, P. P.

P. P. Rajeev, P. Taneja, P. Ayyub, A. S. Sandhu, and G. Ravindra Kumar, “Metal nanoplasmas as bright sources of hard x-ray pulses,” Phys. Rev. Lett. 90, 15003 (2003).
[CrossRef]

Ravindra Kumar, G.

S. Kahaly, S. K. Yadav, W. M. Yang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. Ravindra Kumar, “Near-complete absorption of Intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[CrossRef] [PubMed]

P. P. Rajeev, P. Taneja, P. Ayyub, A. S. Sandhu, and G. Ravindra Kumar, “Metal nanoplasmas as bright sources of hard x-ray pulses,” Phys. Rev. Lett. 90, 15003 (2003).
[CrossRef]

M. Anand, S. Kahaly, G. Ravindra Kumar, M. Krishnamurthy, A. S. Sandhu, and P. Gibbon, “Enhanced hard x-ray emission from microdroplet preplasma,” Appl. Phys. Lett. 88, 18111 (2006).

Rettig, C. L.

C. L. Rettig, W. M. Roquemore, and J. R. Gord, “Efficiency and scaling of an ultrashort-pulse high-repetition-rate laser-driven X-ray source,” App. Phys. B,  93, 365–372 (2008).
[CrossRef]

Richardson, M.

M. Al-Rabban, M. Richardson, M. Scott, F. Gilleron, M. Poirier, and T. J. Blenski, EUV sources for lithography, SPIE Press, 299–337 (2006).

Roquemore, W. M.

C. L. Rettig, W. M. Roquemore, and J. R. Gord, “Efficiency and scaling of an ultrashort-pulse high-repetition-rate laser-driven X-ray source,” App. Phys. B,  93, 365–372 (2008).
[CrossRef]

Rousseau, J. P.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).
[CrossRef] [PubMed]

Y. Glinec, J. Faure, L. Le Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003–025007 (2004).
[CrossRef]

Sandhu, A. S.

A. S. Sandhu, G. R. Kumar, S. Sengupta, A. Das, and P. K. Kaw, “Laser-pulse-induced second-harmonic and hard x-ray emission: role of plasma-wave breaking,” Phys. Rev. Lett. 95, 025005 (2005).
[CrossRef] [PubMed]

P. P. Rajeev, P. Taneja, P. Ayyub, A. S. Sandhu, and G. Ravindra Kumar, “Metal nanoplasmas as bright sources of hard x-ray pulses,” Phys. Rev. Lett. 90, 15003 (2003).
[CrossRef]

M. Anand, S. Kahaly, G. Ravindra Kumar, M. Krishnamurthy, A. S. Sandhu, and P. Gibbon, “Enhanced hard x-ray emission from microdroplet preplasma,” Appl. Phys. Lett. 88, 18111 (2006).

Santos, J. J.

Y. Glinec, J. Faure, L. Le Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003–025007 (2004).
[CrossRef]

Scott, M.

M. Al-Rabban, M. Richardson, M. Scott, F. Gilleron, M. Poirier, and T. J. Blenski, EUV sources for lithography, SPIE Press, 299–337 (2006).

Sengupta, S.

S. Kahaly, S. K. Yadav, W. M. Yang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. Ravindra Kumar, “Near-complete absorption of Intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[CrossRef] [PubMed]

A. S. Sandhu, G. R. Kumar, S. Sengupta, A. Das, and P. K. Kaw, “Laser-pulse-induced second-harmonic and hard x-ray emission: role of plasma-wave breaking,” Phys. Rev. Lett. 95, 025005 (2005).
[CrossRef] [PubMed]

Sheng, Z. M.

S. Kahaly, S. K. Yadav, W. M. Yang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. Ravindra Kumar, “Near-complete absorption of Intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[CrossRef] [PubMed]

Stahl, D. A.

M. T. Madigan, J. M. Martinko, and D. A. Stahl, Brock biology of microorganisms (Pearson Prentice Hall, New Jersey, 2005).

Taneja, P.

P. P. Rajeev, P. Taneja, P. Ayyub, A. S. Sandhu, and G. Ravindra Kumar, “Metal nanoplasmas as bright sources of hard x-ray pulses,” Phys. Rev. Lett. 90, 15003 (2003).
[CrossRef]

Veltchev, I.

C. -M. Ma, I. Veltchev, E. Fourkal, J. S. Li, W. Luo, J. Fan, T. Lin, and A. Pollack, “Development of a laser-driven proton accelerator for cancer therapy,” Laser Phys.,  16, 639–646 (2006).
[CrossRef]

Wang, P. X.

Z. Yan, Y. K. Ho, P. X. Wang, J. F. Hua, Z. Chen, and L. Wu, “Accurate description of ultra-short tightly focused Gaussian laser pulses and vacuum laser acceleration,” App. Phys. B 81, 813–819 (2005).
[CrossRef]

Wu, L.

Z. Yan, Y. K. Ho, P. X. Wang, J. F. Hua, Z. Chen, and L. Wu, “Accurate description of ultra-short tightly focused Gaussian laser pulses and vacuum laser acceleration,” App. Phys. B 81, 813–819 (2005).
[CrossRef]

Yadav, S. K.

S. Kahaly, S. K. Yadav, W. M. Yang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. Ravindra Kumar, “Near-complete absorption of Intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[CrossRef] [PubMed]

Yan, Z.

Z. Yan, Y. K. Ho, P. X. Wang, J. F. Hua, Z. Chen, and L. Wu, “Accurate description of ultra-short tightly focused Gaussian laser pulses and vacuum laser acceleration,” App. Phys. B 81, 813–819 (2005).
[CrossRef]

Yang, W. M.

S. Kahaly, S. K. Yadav, W. M. Yang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. Ravindra Kumar, “Near-complete absorption of Intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[CrossRef] [PubMed]

Zhao, L.

G. Kulcsár, D. AlMawlawi, F. W. Budnik, P. R. Herman, M. Moskovits, L. Zhao, and R. S. Marjoribanks, Intense picosecond x-ray pulses from laser plasmas by use of nanostructured “velvet” targetsPhys. Rev. Lett. 84, 5149–5152 (2000).
[CrossRef] [PubMed]

App. Phys. B

C. L. Rettig, W. M. Roquemore, and J. R. Gord, “Efficiency and scaling of an ultrashort-pulse high-repetition-rate laser-driven X-ray source,” App. Phys. B,  93, 365–372 (2008).
[CrossRef]

Z. Yan, Y. K. Ho, P. X. Wang, J. F. Hua, Z. Chen, and L. Wu, “Accurate description of ultra-short tightly focused Gaussian laser pulses and vacuum laser acceleration,” App. Phys. B 81, 813–819 (2005).
[CrossRef]

Appl. Phys. Lett.

M. Anand, S. Kahaly, G. Ravindra Kumar, M. Krishnamurthy, A. S. Sandhu, and P. Gibbon, “Enhanced hard x-ray emission from microdroplet preplasma,” Appl. Phys. Lett. 88, 18111 (2006).

Laser Phys.

C. -M. Ma, I. Veltchev, E. Fourkal, J. S. Li, W. Luo, J. Fan, T. Lin, and A. Pollack, “Development of a laser-driven proton accelerator for cancer therapy,” Laser Phys.,  16, 639–646 (2006).
[CrossRef]

Nature

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).
[CrossRef] [PubMed]

Phys. Rev. E

M. A. Porras, “Diffraction effect in few-cycle optical pulses,” Phys. Rev. E 65, 026606 (2002).
[CrossRef]

Phys. Rev. Lett.

A. S. Sandhu, G. R. Kumar, S. Sengupta, A. Das, and P. K. Kaw, “Laser-pulse-induced second-harmonic and hard x-ray emission: role of plasma-wave breaking,” Phys. Rev. Lett. 95, 025005 (2005).
[CrossRef] [PubMed]

D. W. Forslund, J. M. Kindel, and K. Lee, “Theory of hot-electron spectra at high laser intensity,” Phys. Rev. Lett. 39, 284–288 (1977).
[CrossRef]

G. Kulcsár, D. AlMawlawi, F. W. Budnik, P. R. Herman, M. Moskovits, L. Zhao, and R. S. Marjoribanks, Intense picosecond x-ray pulses from laser plasmas by use of nanostructured “velvet” targetsPhys. Rev. Lett. 84, 5149–5152 (2000).
[CrossRef] [PubMed]

M. Kundu and D. Bauer, “Nonlinear resonance absorption in the laser-cluster interaction,” Phys. Rev. Lett. 96, 123401 (2006).
[CrossRef] [PubMed]

Y. Glinec, J. Faure, L. Le Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003–025007 (2004).
[CrossRef]

P. P. Rajeev, P. Taneja, P. Ayyub, A. S. Sandhu, and G. Ravindra Kumar, “Metal nanoplasmas as bright sources of hard x-ray pulses,” Phys. Rev. Lett. 90, 15003 (2003).
[CrossRef]

S. Kahaly, S. K. Yadav, W. M. Yang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. Ravindra Kumar, “Near-complete absorption of Intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[CrossRef] [PubMed]

Riv. del Nouv. Cim.

D. Giulietti and L. A. Gizzi, “X-ray emission from laser-produced plasmas,” Riv. del Nouv. Cim. 21, 1–93 (1998).
[CrossRef]

Other

P. Gibbon, Short pulse laser interactions with matter (Imperial College Press, London, 2005).

K. E. Drexler, Nanosystems (Wiley, John & Sons, Inc., 1992).

M. Al-Rabban, M. Richardson, M. Scott, F. Gilleron, M. Poirier, and T. J. Blenski, EUV sources for lithography, SPIE Press, 299–337 (2006).

http://cpicanada.org/CCDB/cgi-bin/STAT_NEW.cgi .

M. T. Madigan, J. M. Martinko, and D. A. Stahl, Brock biology of microorganisms (Pearson Prentice Hall, New Jersey, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental apparatus. A 40 fs pulse of 800 nm light is focused on the target to intensities of about 1016 W cm−2 using a off-axis parabolic mirror. The target is glass substrate coated with a few micron layers of E. coli bacteria. Inset shows an electron microscope (EM) image of E. coli.

Fig. 2
Fig. 2

Bremsstrahlung x-ray spectrum up to 300 keV, measured for different types of targets at a laser intensity of 5 × 1016 W cm−2. The topmost curve (blue circles) represents the yield from the E. coli coated target and it is evident that this is significantly larger than the emissions from the uncoated (pink triangles) and homogenate coated targets (magenta squares). The integrated yield from the E. coli coated target is about 120 times larger than that from the uncoated glass. The homogenate shows only 23 times larger yield. False color EM images of the intact E. coli cells and the homogenate are shown in (b) and (c) respectively.

Fig. 3
Fig. 3

X-ray spectrum from E. coli coated target measured over the entire energy range and Maxwell- Boltzmann fit to data shown as a solid line. The exponential fit has an electron temperature of 57±2 keV

Fig. 4
Fig. 4

Electron spectrum derived from the 2D-PIC simulations with varied number of ellipsoid particle ion the solid as indicated in the legend. Slab refers (black square) refers to electron spectrum with solid slab and eleven refers (red circles) to calculation with eleven ellipsoid particles on the solid slab. The solid line show a two temperature exponential fit to the simulated data. See the text for details. Inset in (b) shows the hot electron yield above 50 keV for calculations with different number of ellipses. The solid slab yield is normalized to one to obtain a relative enhancement.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E x ( t , x , y = y b ) = E 0 ( w 0 / w ( y ) ) e r 2 / w ( y ) 2 × Re [ exp { i ω ( t y c ) + i tan 1 ( y y R ) i ω r 2 2 c R ( y ) } ] ,

Metrics