Abstract

We demonstrate a high power fiber (85μm core) amplifier delivering up to 292Watts of average output power using a mode-locked 30ps source at 1032nm. Utilizing a single mode distributed mode filter bandgap rod fiber, we demonstrate 44% power improvement before the threshold-like onset of mode instabilities by operating the rod fiber in a leaky waveguide regime. We investigate the guiding dynamics of the rod fiber and report a distinct bandgap blue-shifting as function of increased signal power level. Furthermore, we theoretically analyze the guiding dynamics of the DMF rod fiber and explain the bandgap blue-shifting with thermally induced refractive index change of the refractive index profile.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
    [CrossRef] [PubMed]
  2. C. D. Brooks and F. D. Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100?m core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
    [CrossRef]
  3. F. Jansen, F. Stutzki, H. J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, and A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express 18(26), 26834–26842 (2010).
    [CrossRef] [PubMed]
  4. T. T. Alkeskjold, M. Laurila, L. Scolari, and J. Broeng, “Single-Mode ytterbium-doped Large-Mode-Area photonic bandgap rod fiber amplifier,” Opt. Express 19(8), 7398–7409 (2011).
    [CrossRef] [PubMed]
  5. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [CrossRef] [PubMed]
  6. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [CrossRef] [PubMed]
  7. C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19(4), 3258–3271 (2011).
    [CrossRef] [PubMed]
  8. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express 19(24), 23965–23980 (2011).
    [CrossRef] [PubMed]
  9. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett. 36(5), 689–691 (2011).
    [CrossRef] [PubMed]
  10. M. Laurila, J. Saby, T. T. Alkeskjold, L. Scolari, B. Cocquelin, F. Salin, J. Broeng, and J. Lægsgaard, “Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser,” Opt. Express 19(11), 10824–10833 (2011).
    [CrossRef] [PubMed]
  11. I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. Bello Doua, and F. Salin, “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber,” Opt. Express 15(4), 1606–1611 (2007).
    [CrossRef] [PubMed]

2011 (7)

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19(4), 3258–3271 (2011).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett. 36(5), 689–691 (2011).
[CrossRef] [PubMed]

T. T. Alkeskjold, M. Laurila, L. Scolari, and J. Broeng, “Single-Mode ytterbium-doped Large-Mode-Area photonic bandgap rod fiber amplifier,” Opt. Express 19(8), 7398–7409 (2011).
[CrossRef] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[CrossRef] [PubMed]

M. Laurila, J. Saby, T. T. Alkeskjold, L. Scolari, B. Cocquelin, F. Salin, J. Broeng, and J. Lægsgaard, “Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser,” Opt. Express 19(11), 10824–10833 (2011).
[CrossRef] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[CrossRef] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express 19(24), 23965–23980 (2011).
[CrossRef] [PubMed]

2010 (1)

2007 (1)

2006 (2)

C. D. Brooks and F. D. Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100?m core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[CrossRef]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
[CrossRef] [PubMed]

Alkeskjold, T. T.

Baumgartl, M.

Bello Doua, R.

Boullet, J.

Broeng, J.

Brooks, C. D.

C. D. Brooks and F. D. Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100?m core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[CrossRef]

Cardinal, T.

Cocquelin, B.

Eidam, T.

Ermeneux, S.

Guillen, F.

Hansen, K. R.

Jansen, F.

Jauregui, C.

Lægsgaard, J.

Laurila, M.

Limpert, J.

Manek-Hönninger, I.

Otto, H. J.

Podgorski, M.

Röser, F.

Rothhardt, J.

Saby, J.

Salin, F.

Schmidt, O.

Schreiber, T.

Scolari, L.

Smith, A. V.

Smith, J. J.

Steinmetz, A.

Stutzki, F.

Teodoro, F. D.

C. D. Brooks and F. D. Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100?m core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[CrossRef]

Tünnermann, A.

Wirth, C.

Yvernault, P.

Appl. Phys. Lett. (1)

C. D. Brooks and F. D. Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100?m core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[CrossRef]

Opt. Express (9)

F. Jansen, F. Stutzki, H. J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, and A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express 18(26), 26834–26842 (2010).
[CrossRef] [PubMed]

T. T. Alkeskjold, M. Laurila, L. Scolari, and J. Broeng, “Single-Mode ytterbium-doped Large-Mode-Area photonic bandgap rod fiber amplifier,” Opt. Express 19(8), 7398–7409 (2011).
[CrossRef] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[CrossRef] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19(4), 3258–3271 (2011).
[CrossRef] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express 19(24), 23965–23980 (2011).
[CrossRef] [PubMed]

M. Laurila, J. Saby, T. T. Alkeskjold, L. Scolari, B. Cocquelin, F. Salin, J. Broeng, and J. Lægsgaard, “Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser,” Opt. Express 19(11), 10824–10833 (2011).
[CrossRef] [PubMed]

I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. Bello Doua, and F. Salin, “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber,” Opt. Express 15(4), 1606–1611 (2007).
[CrossRef] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Transmission measured of a passive DMF rod fiber having a mode field diameter of 60µm. Interference patterns, in the spectrum indicate multimode behavior, a dip the leaky regime, and the single mode region can be identified between 1050nm – 1070nm. Measured near field images show the guiding dynamics of the DMF rod fiber. (b) Sketched illustration of the guiding regions movement at low and high power operation.

Fig. 2
Fig. 2

Output spectrum of the seed source at 1.1W of average output power having a 10dB spectral width of 0.7nm (~0.3nm FWHM).

Fig. 3
Fig. 3

Slope efficiency measurement of the DMF1030 and the DMF1064 and recorded output spectra at the maximum output powers.

Fig. 4
Fig. 4

Measured beam quality of the DMF1030 below and above the threshold-like onset of mode instabilities. (a) below (<150W) (b)-(f) above the threshold level (>155W).

Fig. 5
Fig. 5

Measured signal core to cladding ratio of the DMF1064 and recorded evolution of near-field image quality at different signal output powers (1032nm seed).

Fig. 6
Fig. 6

Measured signal core to cladding ratio of the DMF1030 and recorded evolution of near-field image quality at different signal output powers (1032nm seed).

Fig. 7
Fig. 7

Development of the mode instabilities onset level of a pristine rod fiber and after photobleaching it with blue laser source (405nm, 20mW, 20hours). Error bars ± 10W represent the inaccuracy caused by the slow detection system.

Fig. 8
Fig. 8

Measured spectrum of the input ASE signal and output spectra of two different rod fibers, one without the DMF elements and one with the DMF elements (DMF1064) under same pumping conditions. The DMF1064 shows clearly resolved edge of the bandgap, leaky wavelength regime, at ~1040nm.

Fig. 9
Fig. 9

Measured bandgap shift of the DMF1064 at different output power levels.

Fig. 12
Fig. 12

Measured and simulated position of the bandgap edge with different output power levels.

Fig. 10
Fig. 10

The thermally induced refractive index profile of a circular symmetric fiber with similar properties as the DMF rod fiber used in the experiments with signal power level of (a) 38W, (b) 97W and (c) 153W.

Fig. 11
Fig. 11

(a) The modeled cross-section of the DMF rod fiber with indication of the zero level from the thermal simulations to estimate the Δn. (b) The fundamental mode bandgap edge movement as a function of wavelength for 10 different signal power levels.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

×[ 1 ε r (r) ×H(x,y) ]= ( ω c ) 2 H(x,y),

Metrics