Abstract

In the paper, a 2 µm high energy fs fiber laser is presented based on Tm doped fiber at a low repetition rate. The seed laser was designed to generate pulse train at 2 µm at a pulse repetition rate of 2.5 MHz. The low repetition rate seed oscillator eliminated extra devices such as AO pulse picker. Two-stage fiber amplifier was used to boost pulse energy to 0.65 µJ with chirped pulse amplification.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Royon, Y. Petit, G. Papon, M. Richardson, and L. Canioni, “Femtosecond laser induced photochemistry in materials tailored with photosensitive agents,” Opt. Mater. Express 1(5), 866–882 (2011).
    [CrossRef]
  2. G. V. Hartland, “Ultrafast studies of single semiconductor and metal nanostructures through transient absorption microscopy,” Chem. Sci. 1(3), 303–309 (2010).
    [CrossRef]
  3. E. A. Gibson, Z. Shen, and R. Jimenez, “Three-pulse photon echo peak shift spectroscopy as a probe of flexibility and conformational heterogeneity in protein folding,” Chem. Phys. Lett. 473(4-6), 330–335 (2009).
    [CrossRef] [PubMed]
  4. B. Xu, Y. Coello, V. V. Lozovoy, and M. Dantus, “Two-photon fluorescence excitation spectroscopy by pulse shaping ultrabroad-bandwidth femtosecond laser pulses,” Appl. Opt. 49(32), 6348–6353 (2010).
    [CrossRef] [PubMed]
  5. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 m thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33(12), 1336–1338 (2008).
    [CrossRef] [PubMed]
  6. L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
    [CrossRef]
  7. G. Imeshev and M. E. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005).
    [CrossRef] [PubMed]
  8. F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Pulse energy of 151 nJ from ultrafast thulium-doped chirped-pulse fiber amplifier,” Opt. Lett. 35(17), 2991–2993 (2010).
    [CrossRef] [PubMed]
  9. R. Sims, P. Kadwani, L. Shah, and M. Richardson, “All thulium fiber CPA system with 107 fs pulse duration and 42 nm bandwidth,” OSA / ASSP 2011, ATuD4.

2011

2010

2009

E. A. Gibson, Z. Shen, and R. Jimenez, “Three-pulse photon echo peak shift spectroscopy as a probe of flexibility and conformational heterogeneity in protein folding,” Chem. Phys. Lett. 473(4-6), 330–335 (2009).
[CrossRef] [PubMed]

2008

2005

1995

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[CrossRef]

Canioni, L.

Chernov, A. I.

Coello, Y.

Dantus, M.

Dianov, E. M.

Fermann, M. E.

Gibson, E. A.

E. A. Gibson, Z. Shen, and R. Jimenez, “Three-pulse photon echo peak shift spectroscopy as a probe of flexibility and conformational heterogeneity in protein folding,” Chem. Phys. Lett. 473(4-6), 330–335 (2009).
[CrossRef] [PubMed]

Hartland, G. V.

G. V. Hartland, “Ultrafast studies of single semiconductor and metal nanostructures through transient absorption microscopy,” Chem. Sci. 1(3), 303–309 (2010).
[CrossRef]

Haus, H. A.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[CrossRef]

Haxsen, F.

Imeshev, G.

Ippen, E. P.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[CrossRef]

Jimenez, R.

E. A. Gibson, Z. Shen, and R. Jimenez, “Three-pulse photon echo peak shift spectroscopy as a probe of flexibility and conformational heterogeneity in protein folding,” Chem. Phys. Lett. 473(4-6), 330–335 (2009).
[CrossRef] [PubMed]

Konov, V. I.

Kracht, D.

Lobach, A. S.

Lozovoy, V. V.

Morgner, U.

Nelson, L. E.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[CrossRef]

Neumann, J.

Obraztsova, E. D.

Papon, G.

Petit, Y.

Richardson, M.

Royon, A.

Shen, Z.

E. A. Gibson, Z. Shen, and R. Jimenez, “Three-pulse photon echo peak shift spectroscopy as a probe of flexibility and conformational heterogeneity in protein folding,” Chem. Phys. Lett. 473(4-6), 330–335 (2009).
[CrossRef] [PubMed]

Solodyankin, M. A.

Tausenev, A. V.

Wandt, D.

Xu, B.

Appl. Opt.

Appl. Phys. Lett.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[CrossRef]

Chem. Phys. Lett.

E. A. Gibson, Z. Shen, and R. Jimenez, “Three-pulse photon echo peak shift spectroscopy as a probe of flexibility and conformational heterogeneity in protein folding,” Chem. Phys. Lett. 473(4-6), 330–335 (2009).
[CrossRef] [PubMed]

Chem. Sci.

G. V. Hartland, “Ultrafast studies of single semiconductor and metal nanostructures through transient absorption microscopy,” Chem. Sci. 1(3), 303–309 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Other

R. Sims, P. Kadwani, L. Shah, and M. Richardson, “All thulium fiber CPA system with 107 fs pulse duration and 42 nm bandwidth,” OSA / ASSP 2011, ATuD4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the seed laser oscillator.

Fig. 2
Fig. 2

Autocorrelation trace of the seed output.

Fig. 3
Fig. 3

Optical spectrum of seed laser before and after stretcher.

Fig. 4
Fig. 4

First stage of amplification with pulse stretcher.

Fig. 5
Fig. 5

Spectrum of pulses after first stage for different levels of output power.

Fig. 6
Fig. 6

Output pulse energy versus pump power of the second stage.

Fig. 7
Fig. 7

Spectrum of output pulses.

Fig. 8
Fig. 8

Autocorrelation trace of compressed pulse.

Metrics