Abstract

We present a novel system that can measure absolute distances of up to 300 mm with an uncertainty of the order of one micrometer, within a timeframe of 40 seconds. The proposed system uses a Michelson interferometer, a tunable laser, a wavelength meter and a computer for analysis. The principle of synthetic wave creation is used in a novel way in that the system employs an initial low precision estimate of the distance, obtained using a triangulation, or time-of-flight, laser system, or similar, and then iterates through a sequence of progressively smaller synthetic wavelengths until it reaches micrometer uncertainties in the determination of the distance. A further novel feature of the system is its use of Fourier transform phase analysis techniques to achieve sub-wavelength accuracy. This method has the major advantages of being relatively simple to realize, offering demonstrated high relative precisions better than 5 × 10−5. Finally, the fact that this device does not require a continuous line-of-sight to the target as is the case with other configurations offers significant advantages.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Ikezawa, K. Isozaki, E. Ogita, and T. Ueda, “Measurement of absolute distance employing a tunable CW dye laser,” IEEE Trans. Instrum. Meas. 41(1), 36–39 (1992).
    [CrossRef]
  2. C. E. Towers, D. T. Reid, W. N. MacPherson, P. R. J. Maier, and D. P. Towers, “Fibre interferometer for multi-wavelength interferometry with a femtosecond laser,” J. Opt. A, Pure Appl. Opt. 7(6), S415–S419 (2005).
    [CrossRef]
  3. R. Dändliker, Y. Salvad, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29(3), 105–114 (1998).
    [CrossRef]
  4. S. Le Floch, Y. Salvadé, R. Mitouassiwou, and P. Favre, “Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry,” Appl. Opt. 47(16), 3027–3031 (2008).
    [CrossRef] [PubMed]
  5. L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol. 19(4), 045307 (2008).
    [CrossRef]
  6. J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16(1), 1–6 (1995).
    [CrossRef]
  7. H.-J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” Nucl. Instrum. Methods Phys. Res. A 575(3), 395–401 (2007).
    [CrossRef]
  8. G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9(7), 1036–1041 (1998).
    [CrossRef]
  9. T. Kinder and K.-D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A, Pure Appl. Opt. 4(6), S364–S368 (2002).
    [CrossRef]
  10. L. Shaozeng and Z. Yang, “Contribution of laser technology in the development of metrology,” Measurement 7(2), 55–59 (1989).
    [CrossRef]
  11. A. Cabral and J. Rebordão, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46(073602), 1–10 (2007).
  12. P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in A hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
    [CrossRef]
  13. S. M. Gibson, P. A. Coe, A. Mitra, D. F. Howell, and R. B. Nickerson, “Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry,” Opt. Lasers Eng. 43(7), 815–831 (2005).
    [CrossRef]
  14. R. Schödel, “Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer,” Meas. Sci. Technol. 19(8), 084003 (2008).
    [CrossRef]
  15. A. Abou-Zeid, K. H. Bechstein, C. Enghave, and H. Kunzmann, “A multichannel diode laser interferometer for displacement measurements on a CMM,” Annals of the ClRP 45(1), 489–492 (1996).
    [CrossRef]
  16. U. Minoni, L. Rovati, M. Bonardi, and F. Docchio, “Metrological characterization of a novel absolute distance meter based on dispersive comb-spectrum interferometry,” in Proc. Of IEEE Instrumentation and Measurement Technology Conference, (St. Paul, Minnesota USA, 18–21 May 1998), pp. 1137–1140.
  17. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
    [CrossRef] [PubMed]
  18. D. Guo and M. Wang, “Self-mixing interferometry based on a double-modulation technique for absolute distance measurement,” Appl. Opt. 46(9), 1486–1491 (2007).
    [CrossRef] [PubMed]
  19. P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol. 16(10), 2066–2071 (2005).
    [CrossRef]
  20. A. Majumdar and H. Huang, “Development of an in-fiber white-light interferometric distance sensor for absolute measurement of arbitrary small distances,” Appl. Opt. 47(15), 2821–2828 (2008).
    [CrossRef] [PubMed]
  21. M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
    [CrossRef]
  22. V. Gusmeroli and M. Martinelli, “Two-wavelength interferometry filtering by superluminescent source,” Opt. Commun. 94, 309–312 (1992).
    [CrossRef]
  23. L. Kervevan, H. Gilles, S. Girard, M. Laroche, and Y. Monfort, “Absolute distance measurement with heterodyne optical feedback on a Yb:Er glass laser,” Appl. Opt. 45(17), 4084–4091 (2006).
    [CrossRef] [PubMed]
  24. U. Schnell, E. Zimmermann, and R. Dändliker, “Absolute distance measurement with synchronously sampled white-light channelled spectrum interferometry,” Pure Appl. Opt. 4(5), 643–651 (1995).
    [CrossRef]
  25. C. Yin, Z. Chao, D. Lin, Y. Xu, and J. Xu, “Absolute length measurement using changeable synthetic wavelength chain,” Opt. Eng. 41(4), 746–750 (2002).
    [CrossRef]
  26. Y. Zhao, T. Zhou, and D. Li, “Heterodyne absolute Distance Interferometer with a dual-mode HeNe laser,” Opt. Eng. 38(2), 246–249 (1999).
    [CrossRef]
  27. S.-H. Lu and C.-C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13(9), 1382–1387 (2002).
    [CrossRef]
  28. K.-H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. Technical Note 29, 179–182 (1998).
  29. G. L. Bourdet and A. G. Orszag, “Absolute distance measurements by CO2 laser multiwavelength interferometry,” Appl. Opt. 18(2), 225–227 (1979).
    [CrossRef] [PubMed]
  30. H. Yu, C. Aleksoff, and J. Ni, “A multiple height-transfer interferometric technique,” Opt. Express 19(17), 16365–16374 (2011).
    [CrossRef] [PubMed]
  31. C. Aleksoff and H. Yu, “Discrete step wavemeter,” Proc. SPIE 7790, 77900H, 77900H-10 (2010).
    [CrossRef]
  32. J. C. Marron and K. W. Gleichman, “Three-dimensional imaging using a tunable laser source,” Opt. Eng. 39(1), 47–51 (2000).
    [CrossRef]
  33. J. Tan, H. Yang, P. Hu, and X. Diao, “Identification and elimination of half-synthetic wavelength error for multi-wavelength long absolute distance measurement,” Meas. Sci. Technol. 22(11), 115301 (2011).
    [CrossRef] [PubMed]
  34. R. Schödel, “Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer,” Meas. Sci. Technol. 19(8), 084003 (2008).
    [CrossRef]
  35. www.longdistanceproject.eu
  36. “TLB- VelocityTM Widely Tunable Lasers,” Accessed on 1st February 2011, http://www.newfocus.com/products/documents/catalog/216.pdf .
  37. “621 Series Laser Wavelength Meter,” Accessed on 1st February 2011, http://www.bristol-inst.com/index_files/pubwebdocs/brochure621wavelengthmeter.pdf .
  38. P. Hariharan, Basics of interferometry, (Elsevier, Second Edition 2007).
  39. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [CrossRef]
  40. D. J. Bone, H. A. Bachor, and R. J. Sandeman, “Fringe-pattern analysis using a 2-D Fourier transform,” Appl. Opt. 25(10), 1653–1660 (1986).
    [CrossRef] [PubMed]
  41. G. James, Modern engineering mathematics, pp. 52–53, (Prentice Hall, 2008).
  42. C. E. Towers, D. P. Towers, and J. D. C. Jones, “Optimum frequency selection in multifrequency interferometry,” Opt. Lett. 28(11), 887–889 (2003).
    [CrossRef] [PubMed]
  43. J. Skiba-Szyma?ska and S. Patela, “Measurement accuracy of the white light interferometer with reference light beam,” International Students and Young Scientists Workshop „Photonics and Microsystems” (2005).

2011 (2)

H. Yu, C. Aleksoff, and J. Ni, “A multiple height-transfer interferometric technique,” Opt. Express 19(17), 16365–16374 (2011).
[CrossRef] [PubMed]

J. Tan, H. Yang, P. Hu, and X. Diao, “Identification and elimination of half-synthetic wavelength error for multi-wavelength long absolute distance measurement,” Meas. Sci. Technol. 22(11), 115301 (2011).
[CrossRef] [PubMed]

2010 (1)

C. Aleksoff and H. Yu, “Discrete step wavemeter,” Proc. SPIE 7790, 77900H, 77900H-10 (2010).
[CrossRef]

2008 (6)

R. Schödel, “Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer,” Meas. Sci. Technol. 19(8), 084003 (2008).
[CrossRef]

A. Majumdar and H. Huang, “Development of an in-fiber white-light interferometric distance sensor for absolute measurement of arbitrary small distances,” Appl. Opt. 47(15), 2821–2828 (2008).
[CrossRef] [PubMed]

S. Le Floch, Y. Salvadé, R. Mitouassiwou, and P. Favre, “Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry,” Appl. Opt. 47(16), 3027–3031 (2008).
[CrossRef] [PubMed]

L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol. 19(4), 045307 (2008).
[CrossRef]

R. Schödel, “Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer,” Meas. Sci. Technol. 19(8), 084003 (2008).
[CrossRef]

Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
[CrossRef] [PubMed]

2007 (4)

D. Guo and M. Wang, “Self-mixing interferometry based on a double-modulation technique for absolute distance measurement,” Appl. Opt. 46(9), 1486–1491 (2007).
[CrossRef] [PubMed]

A. Cabral and J. Rebordão, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46(073602), 1–10 (2007).

H.-J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” Nucl. Instrum. Methods Phys. Res. A 575(3), 395–401 (2007).
[CrossRef]

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[CrossRef]

2006 (1)

2005 (3)

C. E. Towers, D. T. Reid, W. N. MacPherson, P. R. J. Maier, and D. P. Towers, “Fibre interferometer for multi-wavelength interferometry with a femtosecond laser,” J. Opt. A, Pure Appl. Opt. 7(6), S415–S419 (2005).
[CrossRef]

S. M. Gibson, P. A. Coe, A. Mitra, D. F. Howell, and R. B. Nickerson, “Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry,” Opt. Lasers Eng. 43(7), 815–831 (2005).
[CrossRef]

P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol. 16(10), 2066–2071 (2005).
[CrossRef]

2004 (1)

P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in A hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[CrossRef]

2003 (1)

2002 (3)

C. Yin, Z. Chao, D. Lin, Y. Xu, and J. Xu, “Absolute length measurement using changeable synthetic wavelength chain,” Opt. Eng. 41(4), 746–750 (2002).
[CrossRef]

S.-H. Lu and C.-C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13(9), 1382–1387 (2002).
[CrossRef]

T. Kinder and K.-D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A, Pure Appl. Opt. 4(6), S364–S368 (2002).
[CrossRef]

2000 (1)

J. C. Marron and K. W. Gleichman, “Three-dimensional imaging using a tunable laser source,” Opt. Eng. 39(1), 47–51 (2000).
[CrossRef]

1999 (1)

Y. Zhao, T. Zhou, and D. Li, “Heterodyne absolute Distance Interferometer with a dual-mode HeNe laser,” Opt. Eng. 38(2), 246–249 (1999).
[CrossRef]

1998 (3)

K.-H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. Technical Note 29, 179–182 (1998).

G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9(7), 1036–1041 (1998).
[CrossRef]

R. Dändliker, Y. Salvad, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29(3), 105–114 (1998).
[CrossRef]

1996 (1)

A. Abou-Zeid, K. H. Bechstein, C. Enghave, and H. Kunzmann, “A multichannel diode laser interferometer for displacement measurements on a CMM,” Annals of the ClRP 45(1), 489–492 (1996).
[CrossRef]

1995 (2)

J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16(1), 1–6 (1995).
[CrossRef]

U. Schnell, E. Zimmermann, and R. Dändliker, “Absolute distance measurement with synchronously sampled white-light channelled spectrum interferometry,” Pure Appl. Opt. 4(5), 643–651 (1995).
[CrossRef]

1992 (2)

V. Gusmeroli and M. Martinelli, “Two-wavelength interferometry filtering by superluminescent source,” Opt. Commun. 94, 309–312 (1992).
[CrossRef]

K. Ikezawa, K. Isozaki, E. Ogita, and T. Ueda, “Measurement of absolute distance employing a tunable CW dye laser,” IEEE Trans. Instrum. Meas. 41(1), 36–39 (1992).
[CrossRef]

1989 (1)

L. Shaozeng and Z. Yang, “Contribution of laser technology in the development of metrology,” Measurement 7(2), 55–59 (1989).
[CrossRef]

1986 (1)

1982 (1)

1979 (1)

Abou-Zeid, A.

L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol. 19(4), 045307 (2008).
[CrossRef]

A. Abou-Zeid, K. H. Bechstein, C. Enghave, and H. Kunzmann, “A multichannel diode laser interferometer for displacement measurements on a CMM,” Annals of the ClRP 45(1), 489–492 (1996).
[CrossRef]

Aleksoff, C.

Bachor, H. A.

Barton, J. S.

P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol. 16(10), 2066–2071 (2005).
[CrossRef]

Barwood, G. P.

G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9(7), 1036–1041 (1998).
[CrossRef]

Bechstein, K. H.

A. Abou-Zeid, K. H. Bechstein, C. Enghave, and H. Kunzmann, “A multichannel diode laser interferometer for displacement measurements on a CMM,” Annals of the ClRP 45(1), 489–492 (1996).
[CrossRef]

Bechstein, K.-H.

K.-H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. Technical Note 29, 179–182 (1998).

Bone, D. J.

Bourdet, G. L.

Burnell, G.

P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol. 16(10), 2066–2071 (2005).
[CrossRef]

Cabral, A.

A. Cabral and J. Rebordão, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46(073602), 1–10 (2007).

Chao, Z.

C. Yin, Z. Chao, D. Lin, Y. Xu, and J. Xu, “Absolute length measurement using changeable synthetic wavelength chain,” Opt. Eng. 41(4), 746–750 (2002).
[CrossRef]

Coe, P. A.

S. M. Gibson, P. A. Coe, A. Mitra, D. F. Howell, and R. B. Nickerson, “Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry,” Opt. Lasers Eng. 43(7), 815–831 (2005).
[CrossRef]

P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in A hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[CrossRef]

Dändliker, R.

R. Dändliker, Y. Salvad, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29(3), 105–114 (1998).
[CrossRef]

U. Schnell, E. Zimmermann, and R. Dändliker, “Absolute distance measurement with synchronously sampled white-light channelled spectrum interferometry,” Pure Appl. Opt. 4(5), 643–651 (1995).
[CrossRef]

Diao, X.

J. Tan, H. Yang, P. Hu, and X. Diao, “Identification and elimination of half-synthetic wavelength error for multi-wavelength long absolute distance measurement,” Meas. Sci. Technol. 22(11), 115301 (2011).
[CrossRef] [PubMed]

Donati, S.

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[CrossRef]

Enghave, C.

A. Abou-Zeid, K. H. Bechstein, C. Enghave, and H. Kunzmann, “A multichannel diode laser interferometer for displacement measurements on a CMM,” Annals of the ClRP 45(1), 489–492 (1996).
[CrossRef]

Favre, P.

Fuchs, W.

K.-H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. Technical Note 29, 179–182 (1998).

Gibson, S. M.

S. M. Gibson, P. A. Coe, A. Mitra, D. F. Howell, and R. B. Nickerson, “Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry,” Opt. Lasers Eng. 43(7), 815–831 (2005).
[CrossRef]

Gill, P.

G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9(7), 1036–1041 (1998).
[CrossRef]

Gilles, H.

Girard, S.

Giuliani, G.

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[CrossRef]

Gleichman, K. W.

J. C. Marron and K. W. Gleichman, “Three-dimensional imaging using a tunable laser source,” Opt. Eng. 39(1), 47–51 (2000).
[CrossRef]

Guo, D.

Gusmeroli, V.

V. Gusmeroli and M. Martinelli, “Two-wavelength interferometry filtering by superluminescent source,” Opt. Commun. 94, 309–312 (1992).
[CrossRef]

Harrison, P. B.

P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol. 16(10), 2066–2071 (2005).
[CrossRef]

Hartmann, L.

L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol. 19(4), 045307 (2008).
[CrossRef]

Hartmann, M.

J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16(1), 1–6 (1995).
[CrossRef]

Howell, D. F.

S. M. Gibson, P. A. Coe, A. Mitra, D. F. Howell, and R. B. Nickerson, “Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry,” Opt. Lasers Eng. 43(7), 815–831 (2005).
[CrossRef]

P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in A hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[CrossRef]

Hu, P.

J. Tan, H. Yang, P. Hu, and X. Diao, “Identification and elimination of half-synthetic wavelength error for multi-wavelength long absolute distance measurement,” Meas. Sci. Technol. 22(11), 115301 (2011).
[CrossRef] [PubMed]

Huang, H.

Ikezawa, K.

K. Ikezawa, K. Isozaki, E. Ogita, and T. Ueda, “Measurement of absolute distance employing a tunable CW dye laser,” IEEE Trans. Instrum. Meas. 41(1), 36–39 (1992).
[CrossRef]

Ina, H.

Isozaki, K.

K. Ikezawa, K. Isozaki, E. Ogita, and T. Ueda, “Measurement of absolute distance employing a tunable CW dye laser,” IEEE Trans. Instrum. Meas. 41(1), 36–39 (1992).
[CrossRef]

Jones, J. D. C.

P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol. 16(10), 2066–2071 (2005).
[CrossRef]

C. E. Towers, D. P. Towers, and J. D. C. Jones, “Optimum frequency selection in multifrequency interferometry,” Opt. Lett. 28(11), 887–889 (2003).
[CrossRef] [PubMed]

Kervevan, L.

Kinder, T.

T. Kinder and K.-D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A, Pure Appl. Opt. 4(6), S364–S368 (2002).
[CrossRef]

Kobayashi, S.

Kunzmann, H.

A. Abou-Zeid, K. H. Bechstein, C. Enghave, and H. Kunzmann, “A multichannel diode laser interferometer for displacement measurements on a CMM,” Annals of the ClRP 45(1), 489–492 (1996).
[CrossRef]

Laroche, M.

Le Floch, S.

Lee, C.-C.

S.-H. Lu and C.-C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13(9), 1382–1387 (2002).
[CrossRef]

Lévêque, S.

Li, D.

Y. Zhao, T. Zhou, and D. Li, “Heterodyne absolute Distance Interferometer with a dual-mode HeNe laser,” Opt. Eng. 38(2), 246–249 (1999).
[CrossRef]

Lin, D.

C. Yin, Z. Chao, D. Lin, Y. Xu, and J. Xu, “Absolute length measurement using changeable synthetic wavelength chain,” Opt. Eng. 41(4), 746–750 (2002).
[CrossRef]

Lu, S.-H.

S.-H. Lu and C.-C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13(9), 1382–1387 (2002).
[CrossRef]

MacPherson, W. N.

C. E. Towers, D. T. Reid, W. N. MacPherson, P. R. J. Maier, and D. P. Towers, “Fibre interferometer for multi-wavelength interferometry with a femtosecond laser,” J. Opt. A, Pure Appl. Opt. 7(6), S415–S419 (2005).
[CrossRef]

Maier, P. R. J.

C. E. Towers, D. T. Reid, W. N. MacPherson, P. R. J. Maier, and D. P. Towers, “Fibre interferometer for multi-wavelength interferometry with a femtosecond laser,” J. Opt. A, Pure Appl. Opt. 7(6), S415–S419 (2005).
[CrossRef]

Maier, R. R. J.

P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol. 16(10), 2066–2071 (2005).
[CrossRef]

Majumdar, A.

Marron, J. C.

J. C. Marron and K. W. Gleichman, “Three-dimensional imaging using a tunable laser source,” Opt. Eng. 39(1), 47–51 (2000).
[CrossRef]

Martinelli, M.

V. Gusmeroli and M. Martinelli, “Two-wavelength interferometry filtering by superluminescent source,” Opt. Commun. 94, 309–312 (1992).
[CrossRef]

McCulloch, S.

P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol. 16(10), 2066–2071 (2005).
[CrossRef]

Meiners-Hagen, K.

L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol. 19(4), 045307 (2008).
[CrossRef]

Mitouassiwou, R.

Mitra, A.

S. M. Gibson, P. A. Coe, A. Mitra, D. F. Howell, and R. B. Nickerson, “Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry,” Opt. Lasers Eng. 43(7), 815–831 (2005).
[CrossRef]

Monfort, Y.

Ni, J.

Nickerson, R. B.

S. M. Gibson, P. A. Coe, A. Mitra, D. F. Howell, and R. B. Nickerson, “Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry,” Opt. Lasers Eng. 43(7), 815–831 (2005).
[CrossRef]

P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in A hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[CrossRef]

Norgia, M.

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[CrossRef]

Nyberg, S.

H.-J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” Nucl. Instrum. Methods Phys. Res. A 575(3), 395–401 (2007).
[CrossRef]

Ogita, E.

K. Ikezawa, K. Isozaki, E. Ogita, and T. Ueda, “Measurement of absolute distance employing a tunable CW dye laser,” IEEE Trans. Instrum. Meas. 41(1), 36–39 (1992).
[CrossRef]

Orszag, A. G.

Pfeifer, T.

J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16(1), 1–6 (1995).
[CrossRef]

Rebordão, J.

A. Cabral and J. Rebordão, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46(073602), 1–10 (2007).

Reid, D. T.

C. E. Towers, D. T. Reid, W. N. MacPherson, P. R. J. Maier, and D. P. Towers, “Fibre interferometer for multi-wavelength interferometry with a femtosecond laser,” J. Opt. A, Pure Appl. Opt. 7(6), S415–S419 (2005).
[CrossRef]

Riles, K.

H.-J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” Nucl. Instrum. Methods Phys. Res. A 575(3), 395–401 (2007).
[CrossRef]

Rowley, W. R. C.

G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9(7), 1036–1041 (1998).
[CrossRef]

Salewski, K.-D.

T. Kinder and K.-D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A, Pure Appl. Opt. 4(6), S364–S368 (2002).
[CrossRef]

Salvad, Y.

R. Dändliker, Y. Salvad, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29(3), 105–114 (1998).
[CrossRef]

Salvadé, Y.

Sandeman, R. J.

Schnell, U.

U. Schnell, E. Zimmermann, and R. Dändliker, “Absolute distance measurement with synchronously sampled white-light channelled spectrum interferometry,” Pure Appl. Opt. 4(5), 643–651 (1995).
[CrossRef]

Schödel, R.

R. Schödel, “Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer,” Meas. Sci. Technol. 19(8), 084003 (2008).
[CrossRef]

R. Schödel, “Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer,” Meas. Sci. Technol. 19(8), 084003 (2008).
[CrossRef]

Schuhler, N.

Shaozeng, L.

L. Shaozeng and Z. Yang, “Contribution of laser technology in the development of metrology,” Measurement 7(2), 55–59 (1989).
[CrossRef]

Takeda, M.

Tan, J.

J. Tan, H. Yang, P. Hu, and X. Diao, “Identification and elimination of half-synthetic wavelength error for multi-wavelength long absolute distance measurement,” Meas. Sci. Technol. 22(11), 115301 (2011).
[CrossRef] [PubMed]

Thiel, J.

J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16(1), 1–6 (1995).
[CrossRef]

Towers, C. E.

C. E. Towers, D. T. Reid, W. N. MacPherson, P. R. J. Maier, and D. P. Towers, “Fibre interferometer for multi-wavelength interferometry with a femtosecond laser,” J. Opt. A, Pure Appl. Opt. 7(6), S415–S419 (2005).
[CrossRef]

C. E. Towers, D. P. Towers, and J. D. C. Jones, “Optimum frequency selection in multifrequency interferometry,” Opt. Lett. 28(11), 887–889 (2003).
[CrossRef] [PubMed]

Towers, D. P.

C. E. Towers, D. T. Reid, W. N. MacPherson, P. R. J. Maier, and D. P. Towers, “Fibre interferometer for multi-wavelength interferometry with a femtosecond laser,” J. Opt. A, Pure Appl. Opt. 7(6), S415–S419 (2005).
[CrossRef]

C. E. Towers, D. P. Towers, and J. D. C. Jones, “Optimum frequency selection in multifrequency interferometry,” Opt. Lett. 28(11), 887–889 (2003).
[CrossRef] [PubMed]

Ueda, T.

K. Ikezawa, K. Isozaki, E. Ogita, and T. Ueda, “Measurement of absolute distance employing a tunable CW dye laser,” IEEE Trans. Instrum. Meas. 41(1), 36–39 (1992).
[CrossRef]

Wang, M.

Xu, J.

C. Yin, Z. Chao, D. Lin, Y. Xu, and J. Xu, “Absolute length measurement using changeable synthetic wavelength chain,” Opt. Eng. 41(4), 746–750 (2002).
[CrossRef]

Xu, Y.

C. Yin, Z. Chao, D. Lin, Y. Xu, and J. Xu, “Absolute length measurement using changeable synthetic wavelength chain,” Opt. Eng. 41(4), 746–750 (2002).
[CrossRef]

Yang, H.

J. Tan, H. Yang, P. Hu, and X. Diao, “Identification and elimination of half-synthetic wavelength error for multi-wavelength long absolute distance measurement,” Meas. Sci. Technol. 22(11), 115301 (2011).
[CrossRef] [PubMed]

Yang, H.-J.

H.-J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” Nucl. Instrum. Methods Phys. Res. A 575(3), 395–401 (2007).
[CrossRef]

Yang, Z.

L. Shaozeng and Z. Yang, “Contribution of laser technology in the development of metrology,” Measurement 7(2), 55–59 (1989).
[CrossRef]

Yin, C.

C. Yin, Z. Chao, D. Lin, Y. Xu, and J. Xu, “Absolute length measurement using changeable synthetic wavelength chain,” Opt. Eng. 41(4), 746–750 (2002).
[CrossRef]

Yu, H.

Zhao, Y.

Y. Zhao, T. Zhou, and D. Li, “Heterodyne absolute Distance Interferometer with a dual-mode HeNe laser,” Opt. Eng. 38(2), 246–249 (1999).
[CrossRef]

Zhou, T.

Y. Zhao, T. Zhou, and D. Li, “Heterodyne absolute Distance Interferometer with a dual-mode HeNe laser,” Opt. Eng. 38(2), 246–249 (1999).
[CrossRef]

Zimmermann, E.

R. Dändliker, Y. Salvad, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29(3), 105–114 (1998).
[CrossRef]

U. Schnell, E. Zimmermann, and R. Dändliker, “Absolute distance measurement with synchronously sampled white-light channelled spectrum interferometry,” Pure Appl. Opt. 4(5), 643–651 (1995).
[CrossRef]

Annals of the ClRP (1)

A. Abou-Zeid, K. H. Bechstein, C. Enghave, and H. Kunzmann, “A multichannel diode laser interferometer for displacement measurements on a CMM,” Annals of the ClRP 45(1), 489–492 (1996).
[CrossRef]

Appl. Opt. (7)

IEEE Trans. Instrum. Meas. (2)

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[CrossRef]

K. Ikezawa, K. Isozaki, E. Ogita, and T. Ueda, “Measurement of absolute distance employing a tunable CW dye laser,” IEEE Trans. Instrum. Meas. 41(1), 36–39 (1992).
[CrossRef]

J. Opt. (1)

R. Dändliker, Y. Salvad, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29(3), 105–114 (1998).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

C. E. Towers, D. T. Reid, W. N. MacPherson, P. R. J. Maier, and D. P. Towers, “Fibre interferometer for multi-wavelength interferometry with a femtosecond laser,” J. Opt. A, Pure Appl. Opt. 7(6), S415–S419 (2005).
[CrossRef]

T. Kinder and K.-D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A, Pure Appl. Opt. 4(6), S364–S368 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Technical Note (1)

K.-H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. Technical Note 29, 179–182 (1998).

Meas. Sci. Technol. (8)

J. Tan, H. Yang, P. Hu, and X. Diao, “Identification and elimination of half-synthetic wavelength error for multi-wavelength long absolute distance measurement,” Meas. Sci. Technol. 22(11), 115301 (2011).
[CrossRef] [PubMed]

R. Schödel, “Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer,” Meas. Sci. Technol. 19(8), 084003 (2008).
[CrossRef]

R. Schödel, “Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer,” Meas. Sci. Technol. 19(8), 084003 (2008).
[CrossRef]

S.-H. Lu and C.-C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13(9), 1382–1387 (2002).
[CrossRef]

P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in A hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[CrossRef]

P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol. 16(10), 2066–2071 (2005).
[CrossRef]

G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9(7), 1036–1041 (1998).
[CrossRef]

L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol. 19(4), 045307 (2008).
[CrossRef]

Measurement (2)

J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16(1), 1–6 (1995).
[CrossRef]

L. Shaozeng and Z. Yang, “Contribution of laser technology in the development of metrology,” Measurement 7(2), 55–59 (1989).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

H.-J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” Nucl. Instrum. Methods Phys. Res. A 575(3), 395–401 (2007).
[CrossRef]

Opt. Commun. (1)

V. Gusmeroli and M. Martinelli, “Two-wavelength interferometry filtering by superluminescent source,” Opt. Commun. 94, 309–312 (1992).
[CrossRef]

Opt. Eng. (4)

C. Yin, Z. Chao, D. Lin, Y. Xu, and J. Xu, “Absolute length measurement using changeable synthetic wavelength chain,” Opt. Eng. 41(4), 746–750 (2002).
[CrossRef]

Y. Zhao, T. Zhou, and D. Li, “Heterodyne absolute Distance Interferometer with a dual-mode HeNe laser,” Opt. Eng. 38(2), 246–249 (1999).
[CrossRef]

J. C. Marron and K. W. Gleichman, “Three-dimensional imaging using a tunable laser source,” Opt. Eng. 39(1), 47–51 (2000).
[CrossRef]

A. Cabral and J. Rebordão, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46(073602), 1–10 (2007).

Opt. Express (1)

Opt. Lasers Eng. (1)

S. M. Gibson, P. A. Coe, A. Mitra, D. F. Howell, and R. B. Nickerson, “Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry,” Opt. Lasers Eng. 43(7), 815–831 (2005).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

C. Aleksoff and H. Yu, “Discrete step wavemeter,” Proc. SPIE 7790, 77900H, 77900H-10 (2010).
[CrossRef]

Pure Appl. Opt. (1)

U. Schnell, E. Zimmermann, and R. Dändliker, “Absolute distance measurement with synchronously sampled white-light channelled spectrum interferometry,” Pure Appl. Opt. 4(5), 643–651 (1995).
[CrossRef]

Other (7)

www.longdistanceproject.eu

“TLB- VelocityTM Widely Tunable Lasers,” Accessed on 1st February 2011, http://www.newfocus.com/products/documents/catalog/216.pdf .

“621 Series Laser Wavelength Meter,” Accessed on 1st February 2011, http://www.bristol-inst.com/index_files/pubwebdocs/brochure621wavelengthmeter.pdf .

P. Hariharan, Basics of interferometry, (Elsevier, Second Edition 2007).

U. Minoni, L. Rovati, M. Bonardi, and F. Docchio, “Metrological characterization of a novel absolute distance meter based on dispersive comb-spectrum interferometry,” in Proc. Of IEEE Instrumentation and Measurement Technology Conference, (St. Paul, Minnesota USA, 18–21 May 1998), pp. 1137–1140.

J. Skiba-Szyma?ska and S. Patela, “Measurement accuracy of the white light interferometer with reference light beam,” International Students and Young Scientists Workshop „Photonics and Microsystems” (2005).

G. James, Modern engineering mathematics, pp. 52–53, (Prentice Hall, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

A block diagram of the absolute distance measurement system.

Fig. 2
Fig. 2

A photograph of the absolute distance measurement system.

Fig. 3
Fig. 3

Fringe patterns produced by the Michelson interferometer which operates using a single wavelength.(a) ∆L = 0, (b) ∆L < λ/2.

Fig. 4
Fig. 4

Errors introduced using the (a) 1D, (b) 2D Fourier transform methods.

Fig. 5
Fig. 5

Fringe patterns produced by the Michelson interferometer which operates using two wavelengths and ∆L = 0. Fringe patterns produced when the Michelson interferometer operates using the wavelengths (a) λa, (b) λb.(a) ∆L = 0, (b) ∆L < λ/2

Fig. 6
Fig. 6

Fringe patterns produced by the Michelson interferometer which operates using two wavelengths and ∆L ≠ 0. Fringe patterns produced when the Michelson interferometer operates using the wavelengths (a) λa, (b) λb.

Fig. 7
Fig. 7

(a) Finding ∆L for the case when Eq. (26) is satisfied. (b) Finding ∆L for the case when Eq. (27) is satisfied.

Fig. 8
Fig. 8

A flow chart that indicates the procedures required to practically implement the proposed algorithm. The subscript “i” refers to the iteration number. The subscript “m” refers to a measured value.

Fig. 9
Fig. 9

A Matlab program simulates the operation of the absolute distance measurement using the iterative synthetic wavelength algorithm.

Fig. 10
Fig. 10

(a) The effect of uncertainty in the wavelength meter on the probability of convergence for the proposed algorithm. (b) The effect of uncertainty in the wavelength meter on the accuracy of the proposed algorithm. (c) The effect of uncertainty in measuring the phase shift on the probability of convergence. (d) The effect of uncertainty in measuring the phase shift on the accuracy of the proposed algorithm. (e) The effect of uncertainty in setting the wavelength of the tunable laser on the probability of convergence. (f) The effect of uncertainty in setting the wavelength of the tunable laser on the accuracy of the proposed algorithm.

Fig. 11
Fig. 11

(a) The effect of uncertainty in the wavelength meter on the probability of convergence for the proposed algorithm. (b) The effect of uncertainty in the wavelength meter on the accuracy of the proposed algorithm. (c) Zoom in for Fig. 11(b). (d) The effect of uncertainty in measuring the phase difference δϕ on the accuracy of the proposed algorithm. (e) The effect of uncertainty in setting the wavelength of the tunable laser on the accuracy of the proposed algorithm. (f) The effect of η value on the system performance.

Fig. 12
Fig. 12

(a) & (b) Measuring the optical path difference ΔL using three different values of ΔLinitial. (c) Measuring ΔL five-hundred times. (d) The histogram for these five-hundred measurements. (e) Uncertainty for different values of η. (f) Number of iterations required by the system to converge for different values of η.

Fig. 13
Fig. 13

Stability of wavelength of laser system at the upper extremity of its tunability range, 690.1 nm, after 120 minutes warming up time.

Fig. 14
Fig. 14

Stability of wavelength of laser system at the lower extremity of its tunability range, 680.3 nm, after 120 minutes warming up time.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

Δϕ= 2π λ ΔL
ΔL=2( L r L t )
Δφ= 2π λ ΔL
Δφ=Δϕ+2nπ, where n=±1,±2,±3,...
ΔL+Δ L e = (Δφ+Δ φ e )(λ+ λ e ) 2π = Δφλ 2π + Δφ λ e +λΔ φ e + λ e Δ φ e 2π
Δ L e = Δφ λ e +λΔ φ e + λ e Δ φ e 2π
Δ L e = π×2.04×1 0 5 +680×0.036+2.04×1 0 5 ×0.036 2π 4 nm
Δψ= ψ 1 ψ 2
Δϕ={ Δψ Δψ+2π Δψ2π πΔφπ Δφ<π Δφ>π }
Δ ϕ a = 2π λ a ΔL
Δ ϕ b = 2π λ b ΔL
δϕ=Δ ϕ b Δ ϕ a = 2π λ b ΔL 2π λ a ΔL=4πΔL( 1 λ b 1 λ a )=2πΔL λ b λ a λ b λ a = 2πΔL λ s
λ s = λ b λ a λ b λ a = λ b λ a δλ = ( λ a +δλ) λ a δλ
ΔL= δϕ λ s 2π
ΔL= δϕ λ s 2π +n λ s where n = ±1, ±2, ±3, ±4...
λ se = 690×680 690680 690(1+ λ re )×680(1 λ re ) 690(1+ λ re )680(1 λ re ) =0.2 nm
ΔL+Δ L e = (δϕ+δ ϕ e )( λ s + λ se ) 2π = δϕ λ s +δϕ λ se + λ s δ ϕ e + λ se δ ϕ e 2π
Δ L e = δϕ λ se + λ s δ ϕ e + λ se δ ϕ e 2π
Δ L e = π×0.2+46920×0.036+0.2×0.036 2π =268 nm
δ λ 1 = λ a 2 λ s1 λ a
λ b1 = λ a +δ λ 1
Δ L 1 =( N 1 + δ ϕ 1 2π ) λ s1
N U1 = Δ L 1 + ε 1 λ s1
N L1 = Δ L 1 ε 1 λ s1
N U1 N L1 =1
Δ L U1 =( N U1 + δ ϕ 1 2π ) λ s1
Δ L L1 =( N L1 + δ ϕ 1 2π ) λ s1
Δ L L1 ε 1 Δ L 1 Δ L L1 + ε 1
Δ L U1 ε 1 Δ L 1 Δ L U1 + ε 1
η max = λ s i+1 λ s i = 2π 6 2 Δ ϕ e = 2π 6 2 (0.036) =20.5689

Metrics