Abstract

A comparison between the fluorescence spectra of the Nd-doped vanadate crystals (Nd:YVO4, Nd:GdVO4, Nd:LuVO4) for the 4F3/24I11/2 transition is studied. We numerically analyze the condition of gain-to-loss balance via an uncoated intracavity etalon to achieve the dual-wavelength operation. We further experimentally demonstrate the orthogonally polarized dual-wavelength laser with a single Nd:LuVO4 crystal. The simultaneous dual-wavelength Nd:LuVO4 laser at 1085.7 nm in σ polarization and 1088.5 nm in π polarization is realized. At an incident pump power of 12 W, the average output power obtained at 1085.7 nm and 1088.5 nm is 0.4 W and 1.7 W, respectively.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Weigl, “A generalized technique of two-wavelength, nondiffuse holographic interferometry,” Appl. Opt. 10(1), 187–192 (1971).
    [CrossRef] [PubMed]
  2. N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).
  3. R. W. Farley and P. D. Dao, “Development of an intracavity-summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system,” Appl. Opt. 34(21), 4269–4273 (1995).
    [CrossRef] [PubMed]
  4. Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
    [CrossRef]
  5. S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(6), 6125–6130 (2011).
    [CrossRef] [PubMed]
  6. Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262(2), 241–245 (2006).
    [CrossRef]
  7. K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912 and 1063 nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2007).
    [CrossRef]
  8. H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, “Simultaneous multiple wavelength laser action in various Neodymium host crystals,” IEEE J. Quantum Electron. 27(10), 2315–2318 (1991).
    [CrossRef]
  9. Y. F. Chen, “CW dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
    [CrossRef]
  10. X. Yu, C. L. Li, G. C. Sun, B. Z. Li, X. Y. Chen, M. Zhao, J. B. Wang, X. H. Zhang, and G. Y. Jin, “Continuous-wave dual-wavelength operation of a diode-end-pumped Nd:LuVO4 laser,” Laser Phys. 21(6), 1039–1041 (2011).
    [CrossRef]
  11. H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. B. Shi, X. Y. Zhang, and M. H. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34(2), 151–153 (2009).
    [CrossRef] [PubMed]
  12. H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. Y. Zhang, R. J. Lan, and M. H. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
    [CrossRef]
  13. R. Zhou, B. G. Zhang, X. Ding, Z. Q. Cai, W. Q. Wen, P. Wang, and J. Q. Yao, “Continuous-wave operation at 1386 nm in a diode-end-pumped Nd:YVO4 laser,” Opt. Express 13(15), 5818–5824 (2005).
    [CrossRef] [PubMed]
  14. H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3-4), 451–454 (2008).
    [CrossRef]
  15. Y. F. Chen, M. L. Ku, and K. W. Su, “High-power efficient tunable Nd:GdVO4 laser at 1083 nm,” Opt. Lett. 30(16), 2107–2109 (2005).
    [CrossRef] [PubMed]
  16. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
    [CrossRef] [PubMed]
  17. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [CrossRef]
  18. J. B. Baxter and G. W. Guglietta, “Terahertz spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
    [CrossRef] [PubMed]
  19. C. B. Reid, E. Pickwell-MacPherson, J. G. Laufer, A. P. Gibson, J. C. Hebden, and V. P. Wallace, “Accuracy and resolution of THz reflection spectroscopy for medical imaging,” Phys. Med. Biol. 55(16), 4825–4838 (2010).
    [CrossRef] [PubMed]
  20. L. G. Fei and S. L. Zhang, “The discovery of nanometer fringes in laser self-mixing interference,” Opt. Commun. 273(1), 226–230 (2007).
    [CrossRef]
  21. S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
    [CrossRef]
  22. C. Ren and S. L. Zhang, “Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference,” J. Phys. D Appl. Phys. 42(15), 155107 (2009).
    [CrossRef]
  23. X. P. Yan, Q. Liu, H. L. Chen, F. Xing, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19(8), 084202 (2010).
    [CrossRef]
  24. B. Wu, P. P. Jiang, D. Z. Yang, T. Chen, J. Kong, and Y. H. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express 17(8), 6004–6009 (2009).
    [CrossRef] [PubMed]
  25. C. Maunier, J. L. Doualan, R. Moncorge, A. Speghini, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19(8), 1794–1800 (2002).
    [CrossRef]
  26. Y. F. Chen, “cw dual-wavelength operation of a diode-pumped Nd:YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
    [CrossRef]
  27. C. A. Bennett, Principles of Physical Optics (Wiley, 2008).

2011 (3)

S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(6), 6125–6130 (2011).
[CrossRef] [PubMed]

X. Yu, C. L. Li, G. C. Sun, B. Z. Li, X. Y. Chen, M. Zhao, J. B. Wang, X. H. Zhang, and G. Y. Jin, “Continuous-wave dual-wavelength operation of a diode-end-pumped Nd:LuVO4 laser,” Laser Phys. 21(6), 1039–1041 (2011).
[CrossRef]

J. B. Baxter and G. W. Guglietta, “Terahertz spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
[CrossRef] [PubMed]

2010 (3)

C. B. Reid, E. Pickwell-MacPherson, J. G. Laufer, A. P. Gibson, J. C. Hebden, and V. P. Wallace, “Accuracy and resolution of THz reflection spectroscopy for medical imaging,” Phys. Med. Biol. 55(16), 4825–4838 (2010).
[CrossRef] [PubMed]

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[CrossRef]

X. P. Yan, Q. Liu, H. L. Chen, F. Xing, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19(8), 084202 (2010).
[CrossRef]

2009 (4)

B. Wu, P. P. Jiang, D. Z. Yang, T. Chen, J. Kong, and Y. H. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express 17(8), 6004–6009 (2009).
[CrossRef] [PubMed]

C. Ren and S. L. Zhang, “Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference,” J. Phys. D Appl. Phys. 42(15), 155107 (2009).
[CrossRef]

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. B. Shi, X. Y. Zhang, and M. H. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34(2), 151–153 (2009).
[CrossRef] [PubMed]

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. Y. Zhang, R. J. Lan, and M. H. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

2008 (1)

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3-4), 451–454 (2008).
[CrossRef]

2007 (2)

K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912 and 1063 nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2007).
[CrossRef]

L. G. Fei and S. L. Zhang, “The discovery of nanometer fringes in laser self-mixing interference,” Opt. Commun. 273(1), 226–230 (2007).
[CrossRef]

2006 (1)

Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262(2), 241–245 (2006).
[CrossRef]

2005 (3)

2004 (1)

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[CrossRef]

2002 (2)

2000 (2)

Y. F. Chen, “cw dual-wavelength operation of a diode-pumped Nd:YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
[CrossRef]

Y. F. Chen, “CW dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
[CrossRef]

1995 (1)

1991 (1)

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, “Simultaneous multiple wavelength laser action in various Neodymium host crystals,” IEEE J. Quantum Electron. 27(10), 2315–2318 (1991).
[CrossRef]

1982 (1)

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).

1971 (1)

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Basov, N. G.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).

Baxter, J. B.

J. B. Baxter and G. W. Guglietta, “Terahertz spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
[CrossRef] [PubMed]

Bettinelli, M.

Cai, Z. Q.

Cavalli, E.

Chen, H. L.

X. P. Yan, Q. Liu, H. L. Chen, F. Xing, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19(8), 084202 (2010).
[CrossRef]

Chen, T.

Chen, X. Y.

X. Yu, C. L. Li, G. C. Sun, B. Z. Li, X. Y. Chen, M. Zhao, J. B. Wang, X. H. Zhang, and G. Y. Jin, “Continuous-wave dual-wavelength operation of a diode-end-pumped Nd:LuVO4 laser,” Laser Phys. 21(6), 1039–1041 (2011).
[CrossRef]

Chen, Y. F.

Y. F. Chen, M. L. Ku, and K. W. Su, “High-power efficient tunable Nd:GdVO4 laser at 1083 nm,” Opt. Lett. 30(16), 2107–2109 (2005).
[CrossRef] [PubMed]

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[CrossRef]

Y. F. Chen, “CW dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
[CrossRef]

Y. F. Chen, “cw dual-wavelength operation of a diode-pumped Nd:YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
[CrossRef]

Chen, Y. S.

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[CrossRef]

Chen, Z. Q.

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3-4), 451–454 (2008).
[CrossRef]

Dao, P. D.

Ding, X.

Ding, Y. J.

Doualan, J. L.

Farley, R. W.

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Fei, L. G.

L. G. Fei and S. L. Zhang, “The discovery of nanometer fringes in laser self-mixing interference,” Opt. Commun. 273(1), 226–230 (2007).
[CrossRef]

Fernelius, N.

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Gibson, A. P.

C. B. Reid, E. Pickwell-MacPherson, J. G. Laufer, A. P. Gibson, J. C. Hebden, and V. P. Wallace, “Accuracy and resolution of THz reflection spectroscopy for medical imaging,” Phys. Med. Biol. 55(16), 4825–4838 (2010).
[CrossRef] [PubMed]

Gong, M. L.

X. P. Yan, Q. Liu, H. L. Chen, F. Xing, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19(8), 084202 (2010).
[CrossRef]

Gubin, M. A.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).

Guglietta, G. W.

J. B. Baxter and G. W. Guglietta, “Terahertz spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
[CrossRef] [PubMed]

Hebden, J. C.

C. B. Reid, E. Pickwell-MacPherson, J. G. Laufer, A. P. Gibson, J. C. Hebden, and V. P. Wallace, “Accuracy and resolution of THz reflection spectroscopy for medical imaging,” Phys. Med. Biol. 55(16), 4825–4838 (2010).
[CrossRef] [PubMed]

Huang, C. H.

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3-4), 451–454 (2008).
[CrossRef]

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, “Simultaneous multiple wavelength laser action in various Neodymium host crystals,” IEEE J. Quantum Electron. 27(10), 2315–2318 (1991).
[CrossRef]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Huang, L. X.

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3-4), 451–454 (2008).
[CrossRef]

Huber, G.

K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912 and 1063 nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2007).
[CrossRef]

Ji, F.

Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262(2), 241–245 (2006).
[CrossRef]

Jiang, M. H.

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. Y. Zhang, R. J. Lan, and M. H. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. B. Shi, X. Y. Zhang, and M. H. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34(2), 151–153 (2009).
[CrossRef] [PubMed]

Jiang, P. P.

Jin, G. Y.

X. Yu, C. L. Li, G. C. Sun, B. Z. Li, X. Y. Chen, M. Zhao, J. B. Wang, X. H. Zhang, and G. Y. Jin, “Continuous-wave dual-wavelength operation of a diode-end-pumped Nd:LuVO4 laser,” Laser Phys. 21(6), 1039–1041 (2011).
[CrossRef]

Kang, J. U.

S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(6), 6125–6130 (2011).
[CrossRef] [PubMed]

Kim, C. S.

S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(6), 6125–6130 (2011).
[CrossRef] [PubMed]

Kong, J.

Ku, M. L.

Lan, R. J.

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. Y. Zhang, R. J. Lan, and M. H. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

Laufer, J. G.

C. B. Reid, E. Pickwell-MacPherson, J. G. Laufer, A. P. Gibson, J. C. Hebden, and V. P. Wallace, “Accuracy and resolution of THz reflection spectroscopy for medical imaging,” Phys. Med. Biol. 55(16), 4825–4838 (2010).
[CrossRef] [PubMed]

Li, A. H.

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3-4), 451–454 (2008).
[CrossRef]

Li, B. Z.

X. Yu, C. L. Li, G. C. Sun, B. Z. Li, X. Y. Chen, M. Zhao, J. B. Wang, X. H. Zhang, and G. Y. Jin, “Continuous-wave dual-wavelength operation of a diode-end-pumped Nd:LuVO4 laser,” Laser Phys. 21(6), 1039–1041 (2011).
[CrossRef]

Li, C. L.

X. Yu, C. L. Li, G. C. Sun, B. Z. Li, X. Y. Chen, M. Zhao, J. B. Wang, X. H. Zhang, and G. Y. Jin, “Continuous-wave dual-wavelength operation of a diode-end-pumped Nd:LuVO4 laser,” Laser Phys. 21(6), 1039–1041 (2011).
[CrossRef]

Li, E. B.

Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262(2), 241–245 (2006).
[CrossRef]

Li, Y.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[CrossRef]

Liu, Q.

X. P. Yan, Q. Liu, H. L. Chen, F. Xing, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19(8), 084202 (2010).
[CrossRef]

Lu, Y.

Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262(2), 241–245 (2006).
[CrossRef]

Lünstedt, K.

K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912 and 1063 nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2007).
[CrossRef]

Maunier, C.

Moncorge, R.

Nikitin, V. V.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).

Nikuchin, A. V.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Pavel, N.

K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912 and 1063 nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2007).
[CrossRef]

Petermann, K.

K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912 and 1063 nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2007).
[CrossRef]

Petrovskii, V. N.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).

Pickwell-MacPherson, E.

C. B. Reid, E. Pickwell-MacPherson, J. G. Laufer, A. P. Gibson, J. C. Hebden, and V. P. Wallace, “Accuracy and resolution of THz reflection spectroscopy for medical imaging,” Phys. Med. Biol. 55(16), 4825–4838 (2010).
[CrossRef] [PubMed]

Protsenko, E. D.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).

Reid, C. B.

C. B. Reid, E. Pickwell-MacPherson, J. G. Laufer, A. P. Gibson, J. C. Hebden, and V. P. Wallace, “Accuracy and resolution of THz reflection spectroscopy for medical imaging,” Phys. Med. Biol. 55(16), 4825–4838 (2010).
[CrossRef] [PubMed]

Ren, C.

C. Ren and S. L. Zhang, “Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference,” J. Phys. D Appl. Phys. 42(15), 155107 (2009).
[CrossRef]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Shen, H. Y.

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, “Simultaneous multiple wavelength laser action in various Neodymium host crystals,” IEEE J. Quantum Electron. 27(10), 2315–2318 (1991).
[CrossRef]

Shen, Y. H.

Shi, W.

Shi, Z. B.

Son, S. N.

S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(6), 6125–6130 (2011).
[CrossRef] [PubMed]

Song, J. J.

S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(6), 6125–6130 (2011).
[CrossRef] [PubMed]

Speghini, A.

Su, K. W.

Sun, G. C.

X. Yu, C. L. Li, G. C. Sun, B. Z. Li, X. Y. Chen, M. Zhao, J. B. Wang, X. H. Zhang, and G. Y. Jin, “Continuous-wave dual-wavelength operation of a diode-end-pumped Nd:LuVO4 laser,” Laser Phys. 21(6), 1039–1041 (2011).
[CrossRef]

Tan, Y. D.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[CrossRef]

Tsai, S. W.

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[CrossRef]

Tyurikov, D. A.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).

Vodopyanov, K.

Wallace, V. P.

C. B. Reid, E. Pickwell-MacPherson, J. G. Laufer, A. P. Gibson, J. C. Hebden, and V. P. Wallace, “Accuracy and resolution of THz reflection spectroscopy for medical imaging,” Phys. Med. Biol. 55(16), 4825–4838 (2010).
[CrossRef] [PubMed]

Wang, D. S.

X. P. Yan, Q. Liu, H. L. Chen, F. Xing, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19(8), 084202 (2010).
[CrossRef]

Wang, J. B.

X. Yu, C. L. Li, G. C. Sun, B. Z. Li, X. Y. Chen, M. Zhao, J. B. Wang, X. H. Zhang, and G. Y. Jin, “Continuous-wave dual-wavelength operation of a diode-end-pumped Nd:LuVO4 laser,” Laser Phys. 21(6), 1039–1041 (2011).
[CrossRef]

Wang, J. Y.

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. Y. Zhang, R. J. Lan, and M. H. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. B. Shi, X. Y. Zhang, and M. H. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34(2), 151–153 (2009).
[CrossRef] [PubMed]

Wang, P.

Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262(2), 241–245 (2006).
[CrossRef]

R. Zhou, B. G. Zhang, X. Ding, Z. Q. Cai, W. Q. Wen, P. Wang, and J. Q. Yao, “Continuous-wave operation at 1386 nm in a diode-end-pumped Nd:YVO4 laser,” Opt. Express 13(15), 5818–5824 (2005).
[CrossRef] [PubMed]

Wang, Z. P.

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. B. Shi, X. Y. Zhang, and M. H. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34(2), 151–153 (2009).
[CrossRef] [PubMed]

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. Y. Zhang, R. J. Lan, and M. H. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

Wei, Y.

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3-4), 451–454 (2008).
[CrossRef]

Weigl, F.

Wen, W. Q.

Wu, B.

Xing, F.

X. P. Yan, Q. Liu, H. L. Chen, F. Xing, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19(8), 084202 (2010).
[CrossRef]

Xu, D. G.

Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262(2), 241–245 (2006).
[CrossRef]

Yan, X. P.

X. P. Yan, Q. Liu, H. L. Chen, F. Xing, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19(8), 084202 (2010).
[CrossRef]

Yang, D. Z.

Yao, J. Q.

Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262(2), 241–245 (2006).
[CrossRef]

R. Zhou, B. G. Zhang, X. Ding, Z. Q. Cai, W. Q. Wen, P. Wang, and J. Q. Yao, “Continuous-wave operation at 1386 nm in a diode-end-pumped Nd:YVO4 laser,” Opt. Express 13(15), 5818–5824 (2005).
[CrossRef] [PubMed]

Ye, Q. J.

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, “Simultaneous multiple wavelength laser action in various Neodymium host crystals,” IEEE J. Quantum Electron. 27(10), 2315–2318 (1991).
[CrossRef]

Yu, G. F.

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, “Simultaneous multiple wavelength laser action in various Neodymium host crystals,” IEEE J. Quantum Electron. 27(10), 2315–2318 (1991).
[CrossRef]

Yu, H. H.

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. Y. Zhang, R. J. Lan, and M. H. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. B. Shi, X. Y. Zhang, and M. H. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34(2), 151–153 (2009).
[CrossRef] [PubMed]

Yu, X.

X. Yu, C. L. Li, G. C. Sun, B. Z. Li, X. Y. Chen, M. Zhao, J. B. Wang, X. H. Zhang, and G. Y. Jin, “Continuous-wave dual-wavelength operation of a diode-end-pumped Nd:LuVO4 laser,” Laser Phys. 21(6), 1039–1041 (2011).
[CrossRef]

Yu, Y. G.

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. B. Shi, X. Y. Zhang, and M. H. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34(2), 151–153 (2009).
[CrossRef] [PubMed]

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. Y. Zhang, R. J. Lan, and M. H. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

Zeng, R. R.

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, “Simultaneous multiple wavelength laser action in various Neodymium host crystals,” IEEE J. Quantum Electron. 27(10), 2315–2318 (1991).
[CrossRef]

Zeng, Z. D.

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, “Simultaneous multiple wavelength laser action in various Neodymium host crystals,” IEEE J. Quantum Electron. 27(10), 2315–2318 (1991).
[CrossRef]

Zhang, B. G.

Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262(2), 241–245 (2006).
[CrossRef]

R. Zhou, B. G. Zhang, X. Ding, Z. Q. Cai, W. Q. Wen, P. Wang, and J. Q. Yao, “Continuous-wave operation at 1386 nm in a diode-end-pumped Nd:YVO4 laser,” Opt. Express 13(15), 5818–5824 (2005).
[CrossRef] [PubMed]

Zhang, G.

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3-4), 451–454 (2008).
[CrossRef]

Zhang, H. J.

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. B. Shi, X. Y. Zhang, and M. H. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34(2), 151–153 (2009).
[CrossRef] [PubMed]

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. Y. Zhang, R. J. Lan, and M. H. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

Zhang, S. L.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[CrossRef]

C. Ren and S. L. Zhang, “Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference,” J. Phys. D Appl. Phys. 42(15), 155107 (2009).
[CrossRef]

L. G. Fei and S. L. Zhang, “The discovery of nanometer fringes in laser self-mixing interference,” Opt. Commun. 273(1), 226–230 (2007).
[CrossRef]

Zhang, T. L.

Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262(2), 241–245 (2006).
[CrossRef]

Zhang, W. J.

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, “Simultaneous multiple wavelength laser action in various Neodymium host crystals,” IEEE J. Quantum Electron. 27(10), 2315–2318 (1991).
[CrossRef]

Zhang, X. H.

X. Yu, C. L. Li, G. C. Sun, B. Z. Li, X. Y. Chen, M. Zhao, J. B. Wang, X. H. Zhang, and G. Y. Jin, “Continuous-wave dual-wavelength operation of a diode-end-pumped Nd:LuVO4 laser,” Laser Phys. 21(6), 1039–1041 (2011).
[CrossRef]

Zhang, X. Y.

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. B. Shi, X. Y. Zhang, and M. H. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34(2), 151–153 (2009).
[CrossRef] [PubMed]

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. Y. Zhang, R. J. Lan, and M. H. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

Zhao, M.

X. Yu, C. L. Li, G. C. Sun, B. Z. Li, X. Y. Chen, M. Zhao, J. B. Wang, X. H. Zhang, and G. Y. Jin, “Continuous-wave dual-wavelength operation of a diode-end-pumped Nd:LuVO4 laser,” Laser Phys. 21(6), 1039–1041 (2011).
[CrossRef]

Zhao, X.

Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262(2), 241–245 (2006).
[CrossRef]

Zhou, R.

Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262(2), 241–245 (2006).
[CrossRef]

R. Zhou, B. G. Zhang, X. Ding, Z. Q. Cai, W. Q. Wen, P. Wang, and J. Q. Yao, “Continuous-wave operation at 1386 nm in a diode-end-pumped Nd:YVO4 laser,” Opt. Express 13(15), 5818–5824 (2005).
[CrossRef] [PubMed]

Zhou, Y. P.

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, “Simultaneous multiple wavelength laser action in various Neodymium host crystals,” IEEE J. Quantum Electron. 27(10), 2315–2318 (1991).
[CrossRef]

Zhu, H. Y.

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3-4), 451–454 (2008).
[CrossRef]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Anal. Chem. (1)

J. B. Baxter and G. W. Guglietta, “Terahertz spectroscopy,” Anal. Chem. 83(12), 4342–4368 (2011).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (5)

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[CrossRef]

K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912 and 1063 nm in Nd:GdVO4,” Appl. Phys. B 86(1), 65–70 (2007).
[CrossRef]

Y. F. Chen, “CW dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
[CrossRef]

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3-4), 451–454 (2008).
[CrossRef]

Y. F. Chen, “cw dual-wavelength operation of a diode-pumped Nd:YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. Y. Zhang, R. J. Lan, and M. H. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

Chin. Phys. B (1)

X. P. Yan, Q. Liu, H. L. Chen, F. Xing, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19(8), 084202 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, “Simultaneous multiple wavelength laser action in various Neodymium host crystals,” IEEE J. Quantum Electron. 27(10), 2315–2318 (1991).
[CrossRef]

Izv. Akad. Nauk SSSR, Ser. Fiz. (1)

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

C. Ren and S. L. Zhang, “Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference,” J. Phys. D Appl. Phys. 42(15), 155107 (2009).
[CrossRef]

Laser Phys. (1)

X. Yu, C. L. Li, G. C. Sun, B. Z. Li, X. Y. Chen, M. Zhao, J. B. Wang, X. H. Zhang, and G. Y. Jin, “Continuous-wave dual-wavelength operation of a diode-end-pumped Nd:LuVO4 laser,” Laser Phys. 21(6), 1039–1041 (2011).
[CrossRef]

Meas. Sci. Technol. (1)

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[CrossRef]

Opt. Commun. (2)

Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262(2), 241–245 (2006).
[CrossRef]

L. G. Fei and S. L. Zhang, “The discovery of nanometer fringes in laser self-mixing interference,” Opt. Commun. 273(1), 226–230 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Med. Biol. (1)

C. B. Reid, E. Pickwell-MacPherson, J. G. Laufer, A. P. Gibson, J. C. Hebden, and V. P. Wallace, “Accuracy and resolution of THz reflection spectroscopy for medical imaging,” Phys. Med. Biol. 55(16), 4825–4838 (2010).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Sensors (Basel) (1)

S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(6), 6125–6130 (2011).
[CrossRef] [PubMed]

Other (1)

C. A. Bennett, Principles of Physical Optics (Wiley, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Fluorescence emission spectra for the 4F3/24I11/2 laser transition in the Nd:YVO4, Nd:GdVO4 and Nd:LuVO4 crystals at room temperature; (b) fragments of the room-temperature fluorescence spectra near 1080 and 1090 nm.

Fig. 2
Fig. 2

Calculated results for the dependence of (a) the losses for S and P waves and (b) the ratio of laser thresholds on the incident angle for dual-wavelength operation.

Fig. 3
Fig. 3

Schematic of the experimental setup for the dual-wavelength Nd:LuVO4 laser. Right: Measured transmittance curve for the output coupler.

Fig. 4
Fig. 4

Average output power versus the incident pump power for single-wavelength operation. Inset, optical spectrum of single-wavelength operation at the maximum output power.

Fig. 5
Fig. 5

Average output powers versus the incident pump power for dual-wavelength operation.

Fig. 6
Fig. 6

Optical spectrum of dual-wavelength operation at the output power intersection.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P th,i = ln(1/ R i )+ L i 2l η i h υ p σ i τ i 1 s i (r,z) r p (r,z)dν ,i =1,2,
γ= P th,2 P th,1 = ln(1/ R 2 )+ L 2 ln(1/ R 1 )+ L 1 σ 1 σ 2 .
L S = R S (n,θ)+[ 1 R S (n,θ) ] R S (1/n, sin 1 (sinθ/n))
L P = R P (n,θ)+[ 1 R P (n,θ) ] R P (1/n, sin 1 (sinθ/n)),
R S (n,θ)= | cosθ n 2 sin 2 θ cosθ+ n 2 sin 2 θ | 2 , R P (n,θ)= | n 2 sin 2 θ n 2 cosθ n 2 sin 2 θ + n 2 cosθ | 2 ,

Metrics