Abstract

A digital holographic interferometry (DHI) system with three object-illumination beams is used for the first time to measure micro-deformations along the x, y and z axes (3D) on the tympanic membrane (TM) surface of a post-mortem cat. In order to completely and accurately measure the TM surface displacements its shape is required to map on it the x, y and z micro-deformations. The surface contour is obtained by applying small shifts to the object illumination source position. A cw laser in stroboscopic mode and a CCD camera were used and synchronized to the acoustic excitation wave that produces a resonant vibration mode on the tympanic membrane surface. This research work reports on the 3D full field of view response of the TM to sound pressure, and has as its main goal the presentation of DHI as an alternative technique to study the TM real displacement behavior when subjected to sound waves, so it can be used as a diagnostic tool to prevent and treat TM diseases.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Volandri, F. Di Puccio, P. Forte, and C. Carmignani, “Biomechanics of the tympanic membrane,” J. Biomech. 44(7), 1219–1236 (2011).
    [CrossRef] [PubMed]
  2. S. M. Khanna and J. Tonndorf, “Tympanic membrane vibrations in cats studied by time-averaged holography,” J. Acoust. Soc. Am. 51(6B), 1904–1920 (1972).
    [CrossRef] [PubMed]
  3. J. Tonndorf and S. M. Khanna, “The role of the tympanic membrane in middle ear transmission,” Ann. Otol. Rhinol. Laryngol. 79(4), 743–753 (1970).
    [PubMed]
  4. J. Tonndorf and S. M. Khanna, “Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography,” J. Acoust. Soc. Am. 52(4B), 1221–1233 (1972).
    [CrossRef] [PubMed]
  5. M. K. Kim, “Applications of Digital Holography in Biomedical Microscopy,” J. Opt. Soc. Korea 14(2), 77–89 (2010).
    [CrossRef]
  6. C. M. Vest, Holographic Interferometry (John Wiley & Sons, 1979).
  7. G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 45(15), 3456–3462 (2006).
    [CrossRef] [PubMed]
  8. P. K. Rastogi, “Principles of holographic interferometry and speckle metrology,” Top. Appl. Phys. 77, 103–151 (2000).
    [CrossRef]
  9. M. del Socorro Hernández-Montes, C. Pérez-López, and F. Mendoza, “Finding the position of tumor inhomogeneities in a gel-like model of a human breast using 3-D pulsed digital holography,” J. Biomed. Opt. 12, 1–5 (2007).
  10. D. D. Aguayo, F. Mendoza Santoyo, M. H. De la Torre-I, M. D. Salas-Araiza, C. Caloca-Mendez, and D. A. Gutierrez Hernandez, “Insect wing deformation measurements using high speed digital holographic interferometry,” Opt. Express 18(6), 5661–5667 (2010).
    [CrossRef] [PubMed]
  11. F. M. Santoyo, G. Pedrini, S. Schedin, and H. J. Tiziani, “3D displacement measurements of vibrating objects with multi-pulse digital holography,” Meas. Sci. Technol. 10(12), 1305–1308 (1999).
    [CrossRef]
  12. S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999).
    [CrossRef] [PubMed]
  13. G. Pedrini, S. Schedin1, and H. J. Tiziani, “Pulsed digital holography combined with laser vibrometry for 3D measurements of vibrating objects,” Opt. Lasers Eng. 38, 117–129 (2002).
  14. M. De la Torre-Ibarra, F. Mendoza-Santoyo, C. Pérez-López, and S. A. Tonatiuh, “Detection of surface strain by three-dimensional digital holography,” Appl. Opt. 44(1), 27–31 (2005).
    [PubMed]
  15. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and Interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [CrossRef]
  16. C. Quan, W. Chen, and C. J. Tay, “Shape measurement by multi-illumination method in digital holographic Interferometry,” Opt. Commun. 281(15-16), 3957–3964 (2008).
    [CrossRef]
  17. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording Numerical Reconstruction, and Related Techniques (Springer, 2005).
  18. I. Yamaguchi, S. Ohta, and J.-I. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng. 36(5), 417–428 (2001).
    [CrossRef]
  19. J. J. J. Dirckx and W. F. Decraemer, “Interferometer for eardrum shape measurement, based on projection of straight line rulings,” Lasers Med. Sci. 15(2), 131–139 (2000).
    [CrossRef]
  20. W. F. Decraemer and W. R. J. Funnell, “Anatomical and mechanical properties of the tympanic membrane,” In: B. Ars, editor. Chronic otitis media. Pathogenesis-oriented therapeutic Management. The Haugue: Kugler, 51–84 (2008).
  21. C. Furlong, J. J. Rosowski, N. Hulli, and M. E. Ravicz, “Preliminary analyses of tympanic-membrane motion from holographic measurements,” Strain 45(3), 301–309 (2009).
    [CrossRef] [PubMed]
  22. M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt. 14(3), 034023 (2009).
    [CrossRef] [PubMed]
  23. J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res. 253(1-2), 83–96 (2009).
    [CrossRef] [PubMed]
  24. M. S. Hernández-Montes, F. Mendoza Santoyo, C. Pérez López, S. Muñoz Solís, and J. Esquivel, “Digital holographic interferometry applied to the study of tympanic membrane displacements,” Opt. Lasers Eng. 49(6), 698–702 (2011).
    [CrossRef]

2011 (2)

G. Volandri, F. Di Puccio, P. Forte, and C. Carmignani, “Biomechanics of the tympanic membrane,” J. Biomech. 44(7), 1219–1236 (2011).
[CrossRef] [PubMed]

M. S. Hernández-Montes, F. Mendoza Santoyo, C. Pérez López, S. Muñoz Solís, and J. Esquivel, “Digital holographic interferometry applied to the study of tympanic membrane displacements,” Opt. Lasers Eng. 49(6), 698–702 (2011).
[CrossRef]

2010 (2)

2009 (3)

C. Furlong, J. J. Rosowski, N. Hulli, and M. E. Ravicz, “Preliminary analyses of tympanic-membrane motion from holographic measurements,” Strain 45(3), 301–309 (2009).
[CrossRef] [PubMed]

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt. 14(3), 034023 (2009).
[CrossRef] [PubMed]

J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res. 253(1-2), 83–96 (2009).
[CrossRef] [PubMed]

2008 (1)

C. Quan, W. Chen, and C. J. Tay, “Shape measurement by multi-illumination method in digital holographic Interferometry,” Opt. Commun. 281(15-16), 3957–3964 (2008).
[CrossRef]

2007 (1)

M. del Socorro Hernández-Montes, C. Pérez-López, and F. Mendoza, “Finding the position of tumor inhomogeneities in a gel-like model of a human breast using 3-D pulsed digital holography,” J. Biomed. Opt. 12, 1–5 (2007).

2006 (1)

2005 (1)

2002 (1)

G. Pedrini, S. Schedin1, and H. J. Tiziani, “Pulsed digital holography combined with laser vibrometry for 3D measurements of vibrating objects,” Opt. Lasers Eng. 38, 117–129 (2002).

2001 (1)

I. Yamaguchi, S. Ohta, and J.-I. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng. 36(5), 417–428 (2001).
[CrossRef]

2000 (2)

J. J. J. Dirckx and W. F. Decraemer, “Interferometer for eardrum shape measurement, based on projection of straight line rulings,” Lasers Med. Sci. 15(2), 131–139 (2000).
[CrossRef]

P. K. Rastogi, “Principles of holographic interferometry and speckle metrology,” Top. Appl. Phys. 77, 103–151 (2000).
[CrossRef]

1999 (2)

F. M. Santoyo, G. Pedrini, S. Schedin, and H. J. Tiziani, “3D displacement measurements of vibrating objects with multi-pulse digital holography,” Meas. Sci. Technol. 10(12), 1305–1308 (1999).
[CrossRef]

S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999).
[CrossRef] [PubMed]

1982 (1)

1972 (2)

J. Tonndorf and S. M. Khanna, “Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography,” J. Acoust. Soc. Am. 52(4B), 1221–1233 (1972).
[CrossRef] [PubMed]

S. M. Khanna and J. Tonndorf, “Tympanic membrane vibrations in cats studied by time-averaged holography,” J. Acoust. Soc. Am. 51(6B), 1904–1920 (1972).
[CrossRef] [PubMed]

1970 (1)

J. Tonndorf and S. M. Khanna, “The role of the tympanic membrane in middle ear transmission,” Ann. Otol. Rhinol. Laryngol. 79(4), 743–753 (1970).
[PubMed]

Aguayo, D. D.

Caloca-Mendez, C.

Carmignani, C.

G. Volandri, F. Di Puccio, P. Forte, and C. Carmignani, “Biomechanics of the tympanic membrane,” J. Biomech. 44(7), 1219–1236 (2011).
[CrossRef] [PubMed]

Chen, W.

C. Quan, W. Chen, and C. J. Tay, “Shape measurement by multi-illumination method in digital holographic Interferometry,” Opt. Commun. 281(15-16), 3957–3964 (2008).
[CrossRef]

Cheng, J. T.

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt. 14(3), 034023 (2009).
[CrossRef] [PubMed]

J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res. 253(1-2), 83–96 (2009).
[CrossRef] [PubMed]

De la Torre-I, M. H.

De la Torre-Ibarra, M.

Decraemer, W. F.

J. J. J. Dirckx and W. F. Decraemer, “Interferometer for eardrum shape measurement, based on projection of straight line rulings,” Lasers Med. Sci. 15(2), 131–139 (2000).
[CrossRef]

del Socorro Hernández-Montes, M.

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt. 14(3), 034023 (2009).
[CrossRef] [PubMed]

M. del Socorro Hernández-Montes, C. Pérez-López, and F. Mendoza, “Finding the position of tumor inhomogeneities in a gel-like model of a human breast using 3-D pulsed digital holography,” J. Biomed. Opt. 12, 1–5 (2007).

Di Puccio, F.

G. Volandri, F. Di Puccio, P. Forte, and C. Carmignani, “Biomechanics of the tympanic membrane,” J. Biomech. 44(7), 1219–1236 (2011).
[CrossRef] [PubMed]

Dirckx, J. J. J.

J. J. J. Dirckx and W. F. Decraemer, “Interferometer for eardrum shape measurement, based on projection of straight line rulings,” Lasers Med. Sci. 15(2), 131–139 (2000).
[CrossRef]

Esquivel, J.

M. S. Hernández-Montes, F. Mendoza Santoyo, C. Pérez López, S. Muñoz Solís, and J. Esquivel, “Digital holographic interferometry applied to the study of tympanic membrane displacements,” Opt. Lasers Eng. 49(6), 698–702 (2011).
[CrossRef]

Forte, P.

G. Volandri, F. Di Puccio, P. Forte, and C. Carmignani, “Biomechanics of the tympanic membrane,” J. Biomech. 44(7), 1219–1236 (2011).
[CrossRef] [PubMed]

Furlong, C.

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt. 14(3), 034023 (2009).
[CrossRef] [PubMed]

J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res. 253(1-2), 83–96 (2009).
[CrossRef] [PubMed]

C. Furlong, J. J. Rosowski, N. Hulli, and M. E. Ravicz, “Preliminary analyses of tympanic-membrane motion from holographic measurements,” Strain 45(3), 301–309 (2009).
[CrossRef] [PubMed]

Gusev, M. E.

Gutierrez Hernandez, D. A.

Harrington, E.

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt. 14(3), 034023 (2009).
[CrossRef] [PubMed]

J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res. 253(1-2), 83–96 (2009).
[CrossRef] [PubMed]

Hernandez-Montes, M.

J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res. 253(1-2), 83–96 (2009).
[CrossRef] [PubMed]

Hernández-Montes, M. S.

M. S. Hernández-Montes, F. Mendoza Santoyo, C. Pérez López, S. Muñoz Solís, and J. Esquivel, “Digital holographic interferometry applied to the study of tympanic membrane displacements,” Opt. Lasers Eng. 49(6), 698–702 (2011).
[CrossRef]

Hulli, N.

J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res. 253(1-2), 83–96 (2009).
[CrossRef] [PubMed]

C. Furlong, J. J. Rosowski, N. Hulli, and M. E. Ravicz, “Preliminary analyses of tympanic-membrane motion from holographic measurements,” Strain 45(3), 301–309 (2009).
[CrossRef] [PubMed]

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt. 14(3), 034023 (2009).
[CrossRef] [PubMed]

Ina, H.

Kato, J.-I.

I. Yamaguchi, S. Ohta, and J.-I. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng. 36(5), 417–428 (2001).
[CrossRef]

Khanna, S. M.

J. Tonndorf and S. M. Khanna, “Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography,” J. Acoust. Soc. Am. 52(4B), 1221–1233 (1972).
[CrossRef] [PubMed]

S. M. Khanna and J. Tonndorf, “Tympanic membrane vibrations in cats studied by time-averaged holography,” J. Acoust. Soc. Am. 51(6B), 1904–1920 (1972).
[CrossRef] [PubMed]

J. Tonndorf and S. M. Khanna, “The role of the tympanic membrane in middle ear transmission,” Ann. Otol. Rhinol. Laryngol. 79(4), 743–753 (1970).
[PubMed]

Kim, M. K.

Kobayashi, S.

Mendoza, F.

M. del Socorro Hernández-Montes, C. Pérez-López, and F. Mendoza, “Finding the position of tumor inhomogeneities in a gel-like model of a human breast using 3-D pulsed digital holography,” J. Biomed. Opt. 12, 1–5 (2007).

Mendoza Santoyo, F.

M. S. Hernández-Montes, F. Mendoza Santoyo, C. Pérez López, S. Muñoz Solís, and J. Esquivel, “Digital holographic interferometry applied to the study of tympanic membrane displacements,” Opt. Lasers Eng. 49(6), 698–702 (2011).
[CrossRef]

D. D. Aguayo, F. Mendoza Santoyo, M. H. De la Torre-I, M. D. Salas-Araiza, C. Caloca-Mendez, and D. A. Gutierrez Hernandez, “Insect wing deformation measurements using high speed digital holographic interferometry,” Opt. Express 18(6), 5661–5667 (2010).
[CrossRef] [PubMed]

Mendoza-Santoyo, F.

Muñoz Solís, S.

M. S. Hernández-Montes, F. Mendoza Santoyo, C. Pérez López, S. Muñoz Solís, and J. Esquivel, “Digital holographic interferometry applied to the study of tympanic membrane displacements,” Opt. Lasers Eng. 49(6), 698–702 (2011).
[CrossRef]

Ohta, S.

I. Yamaguchi, S. Ohta, and J.-I. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng. 36(5), 417–428 (2001).
[CrossRef]

Osten, W.

Pedrini, G.

G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 45(15), 3456–3462 (2006).
[CrossRef] [PubMed]

G. Pedrini, S. Schedin1, and H. J. Tiziani, “Pulsed digital holography combined with laser vibrometry for 3D measurements of vibrating objects,” Opt. Lasers Eng. 38, 117–129 (2002).

F. M. Santoyo, G. Pedrini, S. Schedin, and H. J. Tiziani, “3D displacement measurements of vibrating objects with multi-pulse digital holography,” Meas. Sci. Technol. 10(12), 1305–1308 (1999).
[CrossRef]

S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999).
[CrossRef] [PubMed]

Pérez López, C.

M. S. Hernández-Montes, F. Mendoza Santoyo, C. Pérez López, S. Muñoz Solís, and J. Esquivel, “Digital holographic interferometry applied to the study of tympanic membrane displacements,” Opt. Lasers Eng. 49(6), 698–702 (2011).
[CrossRef]

Pérez-López, C.

M. del Socorro Hernández-Montes, C. Pérez-López, and F. Mendoza, “Finding the position of tumor inhomogeneities in a gel-like model of a human breast using 3-D pulsed digital holography,” J. Biomed. Opt. 12, 1–5 (2007).

M. De la Torre-Ibarra, F. Mendoza-Santoyo, C. Pérez-López, and S. A. Tonatiuh, “Detection of surface strain by three-dimensional digital holography,” Appl. Opt. 44(1), 27–31 (2005).
[PubMed]

Quan, C.

C. Quan, W. Chen, and C. J. Tay, “Shape measurement by multi-illumination method in digital holographic Interferometry,” Opt. Commun. 281(15-16), 3957–3964 (2008).
[CrossRef]

Rastogi, P. K.

P. K. Rastogi, “Principles of holographic interferometry and speckle metrology,” Top. Appl. Phys. 77, 103–151 (2000).
[CrossRef]

Ravicz, M. E.

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt. 14(3), 034023 (2009).
[CrossRef] [PubMed]

J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res. 253(1-2), 83–96 (2009).
[CrossRef] [PubMed]

C. Furlong, J. J. Rosowski, N. Hulli, and M. E. Ravicz, “Preliminary analyses of tympanic-membrane motion from holographic measurements,” Strain 45(3), 301–309 (2009).
[CrossRef] [PubMed]

Rosowski, J. J.

C. Furlong, J. J. Rosowski, N. Hulli, and M. E. Ravicz, “Preliminary analyses of tympanic-membrane motion from holographic measurements,” Strain 45(3), 301–309 (2009).
[CrossRef] [PubMed]

J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res. 253(1-2), 83–96 (2009).
[CrossRef] [PubMed]

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt. 14(3), 034023 (2009).
[CrossRef] [PubMed]

Salas-Araiza, M. D.

Santoyo, F. M.

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt. 14(3), 034023 (2009).
[CrossRef] [PubMed]

F. M. Santoyo, G. Pedrini, S. Schedin, and H. J. Tiziani, “3D displacement measurements of vibrating objects with multi-pulse digital holography,” Meas. Sci. Technol. 10(12), 1305–1308 (1999).
[CrossRef]

S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999).
[CrossRef] [PubMed]

Schedin, S.

S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999).
[CrossRef] [PubMed]

F. M. Santoyo, G. Pedrini, S. Schedin, and H. J. Tiziani, “3D displacement measurements of vibrating objects with multi-pulse digital holography,” Meas. Sci. Technol. 10(12), 1305–1308 (1999).
[CrossRef]

Schedin1, S.

G. Pedrini, S. Schedin1, and H. J. Tiziani, “Pulsed digital holography combined with laser vibrometry for 3D measurements of vibrating objects,” Opt. Lasers Eng. 38, 117–129 (2002).

Takeda, M.

Tay, C. J.

C. Quan, W. Chen, and C. J. Tay, “Shape measurement by multi-illumination method in digital holographic Interferometry,” Opt. Commun. 281(15-16), 3957–3964 (2008).
[CrossRef]

Tiziani, H. J.

G. Pedrini, S. Schedin1, and H. J. Tiziani, “Pulsed digital holography combined with laser vibrometry for 3D measurements of vibrating objects,” Opt. Lasers Eng. 38, 117–129 (2002).

S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999).
[CrossRef] [PubMed]

F. M. Santoyo, G. Pedrini, S. Schedin, and H. J. Tiziani, “3D displacement measurements of vibrating objects with multi-pulse digital holography,” Meas. Sci. Technol. 10(12), 1305–1308 (1999).
[CrossRef]

Tonatiuh, S. A.

Tonndorf, J.

J. Tonndorf and S. M. Khanna, “Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography,” J. Acoust. Soc. Am. 52(4B), 1221–1233 (1972).
[CrossRef] [PubMed]

S. M. Khanna and J. Tonndorf, “Tympanic membrane vibrations in cats studied by time-averaged holography,” J. Acoust. Soc. Am. 51(6B), 1904–1920 (1972).
[CrossRef] [PubMed]

J. Tonndorf and S. M. Khanna, “The role of the tympanic membrane in middle ear transmission,” Ann. Otol. Rhinol. Laryngol. 79(4), 743–753 (1970).
[PubMed]

Volandri, G.

G. Volandri, F. Di Puccio, P. Forte, and C. Carmignani, “Biomechanics of the tympanic membrane,” J. Biomech. 44(7), 1219–1236 (2011).
[CrossRef] [PubMed]

Yamaguchi, I.

I. Yamaguchi, S. Ohta, and J.-I. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng. 36(5), 417–428 (2001).
[CrossRef]

Ann. Otol. Rhinol. Laryngol. (1)

J. Tonndorf and S. M. Khanna, “The role of the tympanic membrane in middle ear transmission,” Ann. Otol. Rhinol. Laryngol. 79(4), 743–753 (1970).
[PubMed]

Appl. Opt. (3)

Hear. Res. (1)

J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res. 253(1-2), 83–96 (2009).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (2)

J. Tonndorf and S. M. Khanna, “Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography,” J. Acoust. Soc. Am. 52(4B), 1221–1233 (1972).
[CrossRef] [PubMed]

S. M. Khanna and J. Tonndorf, “Tympanic membrane vibrations in cats studied by time-averaged holography,” J. Acoust. Soc. Am. 51(6B), 1904–1920 (1972).
[CrossRef] [PubMed]

J. Biomech. (1)

G. Volandri, F. Di Puccio, P. Forte, and C. Carmignani, “Biomechanics of the tympanic membrane,” J. Biomech. 44(7), 1219–1236 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

M. del Socorro Hernández-Montes, C. Pérez-López, and F. Mendoza, “Finding the position of tumor inhomogeneities in a gel-like model of a human breast using 3-D pulsed digital holography,” J. Biomed. Opt. 12, 1–5 (2007).

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt. 14(3), 034023 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Korea (1)

Lasers Med. Sci. (1)

J. J. J. Dirckx and W. F. Decraemer, “Interferometer for eardrum shape measurement, based on projection of straight line rulings,” Lasers Med. Sci. 15(2), 131–139 (2000).
[CrossRef]

Meas. Sci. Technol. (1)

F. M. Santoyo, G. Pedrini, S. Schedin, and H. J. Tiziani, “3D displacement measurements of vibrating objects with multi-pulse digital holography,” Meas. Sci. Technol. 10(12), 1305–1308 (1999).
[CrossRef]

Opt. Commun. (1)

C. Quan, W. Chen, and C. J. Tay, “Shape measurement by multi-illumination method in digital holographic Interferometry,” Opt. Commun. 281(15-16), 3957–3964 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (3)

I. Yamaguchi, S. Ohta, and J.-I. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng. 36(5), 417–428 (2001).
[CrossRef]

G. Pedrini, S. Schedin1, and H. J. Tiziani, “Pulsed digital holography combined with laser vibrometry for 3D measurements of vibrating objects,” Opt. Lasers Eng. 38, 117–129 (2002).

M. S. Hernández-Montes, F. Mendoza Santoyo, C. Pérez López, S. Muñoz Solís, and J. Esquivel, “Digital holographic interferometry applied to the study of tympanic membrane displacements,” Opt. Lasers Eng. 49(6), 698–702 (2011).
[CrossRef]

Strain (1)

C. Furlong, J. J. Rosowski, N. Hulli, and M. E. Ravicz, “Preliminary analyses of tympanic-membrane motion from holographic measurements,” Strain 45(3), 301–309 (2009).
[CrossRef] [PubMed]

Top. Appl. Phys. (1)

P. K. Rastogi, “Principles of holographic interferometry and speckle metrology,” Top. Appl. Phys. 77, 103–151 (2000).
[CrossRef]

Other (3)

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording Numerical Reconstruction, and Related Techniques (Springer, 2005).

C. M. Vest, Holographic Interferometry (John Wiley & Sons, 1979).

W. F. Decraemer and W. R. J. Funnell, “Anatomical and mechanical properties of the tympanic membrane,” In: B. Ars, editor. Chronic otitis media. Pathogenesis-oriented therapeutic Management. The Haugue: Kugler, 51–84 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

3D-DHI experimental setup: M, Mirror; Bs1, beam splitter, Bs2, beam combiner; L, lens; A, aperture; OF, single mode optical fiber; AOM, acousto-optic modulators; P1, P2, P3, object illumination directions.

Fig. 2
Fig. 2

Experimentally found TM surface contour.

Fig. 3
Fig. 3

Measurement of the membrane vibration at 1.2 kHz. (a), (b) and (c) are wrapped phase maps corresponding to the illumination directions k 1 , k 2 and k 3 , respectively (see Fig. 1). The unwrapped phase maps (A), (B) and (C) were obtained from previous phase maps.

Fig. 4
Fig. 4

Displacements along x, y and z directions on TM (A), (B), and (C), respectively. The shape of the object is given in mm. The color bar scale is different for each picture and vibration amplitude is in μm.

Fig. 5
Fig. 5

Deformation overlaid on the tympanic membrane contour, in (A) the normal direction, and (B) the tangential direction.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I 1,2 ( x,y ) =I o ( x,y ) +I r ( x,y )+2 I o I cos(φ+ψ)
Δφ( x,y )=arctan Re{ I 1 ( x,y ) }Im{ I 2 ( x,y ) }-Re{ I 2 ( x,y ) } Im{I 1 ( x,y )} Im{ I 1 ( x,y ) }Im{ I 2 ( x,y ) }+Re{ I 1 ( x,y ) }Re{ I 2 ( x,y ) }
( d x d y d z )= λ 2π [ S 1x     S 1y     S 1z S 2x     S 2y     S 2z S 3x     S 3y     S 3z ] 1 [ Δ φ 1 Δ φ 2 Δ φ 3 ]
Δφ=2Ksin Δθ 2 [ xcos( θ+ Δθ 2 )h(x)sinθ+ Δθ 2 ]

Metrics