Abstract

The spatially resolved spectral (S2) imaging method is applied on an active microstructured fiber, with a multi-filament core (MFC). This type of fiber has been designed to be the last amplifying stage of a source for a long range coherent lidar. Studying the influence of the bending radius on the modal content with or without gain, we demonstrate that an upper-bound of the high-order modes content can be found by performing the S2 imaging on the bleached fiber. S2 imaging is then used to verify that the output beam of the MFC fiber can be made effectively single-mode. We also show that it can be simply adapted for measuring the fiber birefringence. Finally, a comparison of the MFC fiber mode area with that of a standard large mode area Erbium doped step index fiber illustrates the interest of the MFC structure for high power amplifiers.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
    [CrossRef] [PubMed]
  2. W. Shi, E. B. Petersen, Z. Yao, D. T. Nguyen, J. Zong, M. A. Stephen, A. Chavez-Pirson, and N. Peyghambarian, “Kilowatt-level stimulated-Brillouin-scattering-threshold monolithic transform-limited 100 ns pulsed fiber laser at 1530 nm,” Opt. Lett. 35(14), 2418–2420 (2010).
    [CrossRef] [PubMed]
  3. S. Ramachandran, J. Fini, M. Mermelstein, J. Nicholson, S. Ghalmi, and M. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
    [CrossRef]
  4. V. Fomin, M. Abramov, A. Ferin, A. Abramov, D. Mochalov, N. Platonov, and V. Gapontsev, “10 kW single-mode fiber laser,” presented at 5th International Symposium on High-Power Fiber Lasers and Their Applications (2010).
  5. G. Canat, S. Jetschke, S. Unger, L. Lombard, P. Bourdon, J. Kirchhof, V. Jolivet, A. Dolfi, and O. Vasseur, “Multifilament-core fibers for high energy pulse amplification at 1.5 microm with excellent beam quality,” Opt. Lett. 33(22), 2701–2703 (2008).
    [CrossRef] [PubMed]
  6. G. Canat, L. Lombard, P. Bourdon, V. Jolivet, O. Vasseur, S. Jetschke, S. Unger, and J. Kirchhof, “Measurement and modeling of Brillouin scattering in a multifilament core fiber,” in CLEO 2009, JTuB3.
  7. G. Canat, R. Spittel, S. Jetschke, L. Lombard, and P. Bourdon, “Analysis of the multifilament core fiber using the effective index theory,” Opt. Express 18(5), 4644–4654 (2010).
    [CrossRef] [PubMed]
  8. A. Barthelemy, P. Facq, C. Froehly, and J. Arnaud, “New method for precise characterisation of multimode optical fibres,” Electron. Lett. 18(6), 247–249 (1982).
    [CrossRef]
  9. G. Brun, I. Verrier, M. Ramos, J.-P. Goure, P. Ottavi, and A.-M. Lambert, “Measurement of mode times of flight in multimode fibers by an interferometric method using polychromatic light: theoretical approach and experimental results,” Appl. Opt. 35(7), 1129–1134 (1996).
    [CrossRef] [PubMed]
  10. J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
    [CrossRef]
  11. J. Nicholson, J. Jasapara, A. Desantolo, E. Monberg, and F. Dimarcello, “Characterizing the modes of a core-pumped, large-mode area Er fiber using spatially and spectrally resolved imaging,” in CLEO 2009, CWD4.
  12. T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, “Complete modal decomposition for optical fibers using CGH-based correlation filters,” Opt. Express 17(11), 9347–9356 (2009).
    [CrossRef] [PubMed]
  13. D. N. Schimpf, R. A. Barankov, and S. Ramachandran, “Cross-correlated (C2) imaging of fiber and waveguide modes,” Opt. Express 19(14), 13008–13019 (2011).
    [CrossRef] [PubMed]
  14. D. M. Nguyen, S. Blin, T. N. Nguyen, S. D. Le, L. Provino, M. Thual, and T. Chartier, “Modal decomposition technique for multimode fibers,” Appl. Opt., in press.
  15. M. Midrio, M. P. Singh, and C. G. Someda, “The space filling mode of holey fibers: an analytical vectorial solution,” J. Lightwave Technol. 18(7), 1031–1037 (2000).
    [CrossRef]
  16. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
    [CrossRef]
  17. V. Kuhn, S. Unger, S. Jetschke, D. Kracht, J. Neumann, J. Kirchhof, and P. Weßels, “Experimental comparison of fundamental mode content in Er:Yb-codoped LMA fibers with multifilament- and pedestal-design cores,” J. Lightwave Technol. 28, 3212–3219 (2010).
  18. S. C. Rashleigh, “Measurement of fiber birefringence by wavelength scanning: effect of dispersion,” Opt. Lett. 8(6), 336–338 (1983).
    [CrossRef] [PubMed]
  19. M. Legre, M. Wegmuller, and N. Gisin, “Investigation of the ratio between phase and group birefringence in optical single-mode fibers,” J. Lightwave Technol. 21(12), 3374–3378 (2003).
    [CrossRef]
  20. P. L. Chu and R. A. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” J. Lightwave Technol. LT-2, 650–662 (1984).

2011

2010

2009

T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, “Complete modal decomposition for optical fibers using CGH-based correlation filters,” Opt. Express 17(11), 9347–9356 (2009).
[CrossRef] [PubMed]

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[CrossRef]

2008

S. Ramachandran, J. Fini, M. Mermelstein, J. Nicholson, S. Ghalmi, and M. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[CrossRef]

G. Canat, S. Jetschke, S. Unger, L. Lombard, P. Bourdon, J. Kirchhof, V. Jolivet, A. Dolfi, and O. Vasseur, “Multifilament-core fibers for high energy pulse amplification at 1.5 microm with excellent beam quality,” Opt. Lett. 33(22), 2701–2703 (2008).
[CrossRef] [PubMed]

2007

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
[CrossRef] [PubMed]

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[CrossRef]

2003

2000

1996

1984

P. L. Chu and R. A. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” J. Lightwave Technol. LT-2, 650–662 (1984).

1983

1982

A. Barthelemy, P. Facq, C. Froehly, and J. Arnaud, “New method for precise characterisation of multimode optical fibres,” Electron. Lett. 18(6), 247–249 (1982).
[CrossRef]

Arnaud, J.

A. Barthelemy, P. Facq, C. Froehly, and J. Arnaud, “New method for precise characterisation of multimode optical fibres,” Electron. Lett. 18(6), 247–249 (1982).
[CrossRef]

Barankov, R. A.

Barthelemy, A.

A. Barthelemy, P. Facq, C. Froehly, and J. Arnaud, “New method for precise characterisation of multimode optical fibres,” Electron. Lett. 18(6), 247–249 (1982).
[CrossRef]

Blin, S.

D. M. Nguyen, S. Blin, T. N. Nguyen, S. D. Le, L. Provino, M. Thual, and T. Chartier, “Modal decomposition technique for multimode fibers,” Appl. Opt., in press.

Bourdon, P.

Brun, G.

Canat, G.

Chartier, T.

D. M. Nguyen, S. Blin, T. N. Nguyen, S. D. Le, L. Provino, M. Thual, and T. Chartier, “Modal decomposition technique for multimode fibers,” Appl. Opt., in press.

Chavez-Pirson, A.

Chen, X.

Chu, P. L.

P. L. Chu and R. A. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” J. Lightwave Technol. LT-2, 650–662 (1984).

Cole, J. H.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[CrossRef]

Crowley, A. M.

Demeritt, J. A.

Dolfi, A.

Duparré, M.

Facq, P.

A. Barthelemy, P. Facq, C. Froehly, and J. Arnaud, “New method for precise characterisation of multimode optical fibres,” Electron. Lett. 18(6), 247–249 (1982).
[CrossRef]

Fini, J.

S. Ramachandran, J. Fini, M. Mermelstein, J. Nicholson, S. Ghalmi, and M. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[CrossRef]

Fini, J. M.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[CrossRef]

Flamm, D.

Froehly, C.

A. Barthelemy, P. Facq, C. Froehly, and J. Arnaud, “New method for precise characterisation of multimode optical fibres,” Electron. Lett. 18(6), 247–249 (1982).
[CrossRef]

Ghalmi, S.

S. Ramachandran, J. Fini, M. Mermelstein, J. Nicholson, S. Ghalmi, and M. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[CrossRef]

Gisin, N.

Goure, J.-P.

Gray, S.

Jetschke, S.

Jolivet, V.

Kaiser, T.

Kirchhof, J.

Kracht, D.

Kuhn, V.

Lambert, A.-M.

Le, S. D.

D. M. Nguyen, S. Blin, T. N. Nguyen, S. D. Le, L. Provino, M. Thual, and T. Chartier, “Modal decomposition technique for multimode fibers,” Appl. Opt., in press.

Legre, M.

Li, M.-J.

Liu, A.

Lombard, L.

Mermelstein, M.

S. Ramachandran, J. Fini, M. Mermelstein, J. Nicholson, S. Ghalmi, and M. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[CrossRef]

Mermelstein, M. D.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[CrossRef]

Midrio, M.

Neumann, J.

Nguyen, D. M.

D. M. Nguyen, S. Blin, T. N. Nguyen, S. D. Le, L. Provino, M. Thual, and T. Chartier, “Modal decomposition technique for multimode fibers,” Appl. Opt., in press.

Nguyen, D. T.

Nguyen, T. N.

D. M. Nguyen, S. Blin, T. N. Nguyen, S. D. Le, L. Provino, M. Thual, and T. Chartier, “Modal decomposition technique for multimode fibers,” Appl. Opt., in press.

Nicholson, J.

S. Ramachandran, J. Fini, M. Mermelstein, J. Nicholson, S. Ghalmi, and M. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[CrossRef]

Nicholson, J. W.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[CrossRef]

Ottavi, P.

Petersen, E. B.

Peyghambarian, N.

Provino, L.

D. M. Nguyen, S. Blin, T. N. Nguyen, S. D. Le, L. Provino, M. Thual, and T. Chartier, “Modal decomposition technique for multimode fibers,” Appl. Opt., in press.

Ramachandran, S.

D. N. Schimpf, R. A. Barankov, and S. Ramachandran, “Cross-correlated (C2) imaging of fiber and waveguide modes,” Opt. Express 19(14), 13008–13019 (2011).
[CrossRef] [PubMed]

S. Ramachandran, J. Fini, M. Mermelstein, J. Nicholson, S. Ghalmi, and M. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[CrossRef]

Ramos, M.

Rashleigh, S. C.

Ruffin, A. B.

Sammut, R. A.

P. L. Chu and R. A. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” J. Lightwave Technol. LT-2, 650–662 (1984).

Schermer, R. T.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[CrossRef]

Schimpf, D. N.

Schröter, S.

Shi, W.

Singh, M. P.

Someda, C. G.

Spittel, R.

Stephen, M. A.

Thual, M.

D. M. Nguyen, S. Blin, T. N. Nguyen, S. D. Le, L. Provino, M. Thual, and T. Chartier, “Modal decomposition technique for multimode fibers,” Appl. Opt., in press.

Unger, S.

Vasseur, O.

Verrier, I.

Walton, D. T.

Wang, J.

Wegmuller, M.

Weßels, P.

Yablon, A. D.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[CrossRef]

Yan, M.

S. Ramachandran, J. Fini, M. Mermelstein, J. Nicholson, S. Ghalmi, and M. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[CrossRef]

Yao, Z.

Zenteno, L. A.

Zong, J.

Appl. Opt.

Electron. Lett.

A. Barthelemy, P. Facq, C. Froehly, and J. Arnaud, “New method for precise characterisation of multimode optical fibres,” Electron. Lett. 18(6), 247–249 (1982).
[CrossRef]

IEEE J. Quantum Electron.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[CrossRef]

J. Lightwave Technol.

Laser Photonics Rev.

S. Ramachandran, J. Fini, M. Mermelstein, J. Nicholson, S. Ghalmi, and M. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Other

V. Fomin, M. Abramov, A. Ferin, A. Abramov, D. Mochalov, N. Platonov, and V. Gapontsev, “10 kW single-mode fiber laser,” presented at 5th International Symposium on High-Power Fiber Lasers and Their Applications (2010).

G. Canat, L. Lombard, P. Bourdon, V. Jolivet, O. Vasseur, S. Jetschke, S. Unger, and J. Kirchhof, “Measurement and modeling of Brillouin scattering in a multifilament core fiber,” in CLEO 2009, JTuB3.

J. Nicholson, J. Jasapara, A. Desantolo, E. Monberg, and F. Dimarcello, “Characterizing the modes of a core-pumped, large-mode area Er fiber using spatially and spectrally resolved imaging,” in CLEO 2009, CWD4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Setup of our S2 measurement. ECDL: extended cavity diode laser; L1, L2, L3: lenses; HWP: half wavelength plate; DM: dichroic mirror, HR for 976 nm, HT for 1550 nm; PBS: polarizing beam splitter. Inset: picture of the MFC core with the polarization maintaining rods.

Fig. 2
Fig. 2

S2 spectra of the output near-field of the MFC fiber, without pumping, for input signal powers from 60 to 680 mW. Dotted curves: spectra for a single-mode fiber and for the CCD noise. Right, from (a) to (d): near-field images of the modes corresponding to the peaks on the S2 spectrum for Pin = 470mW.

Fig. 3
Fig. 3

S2 spectra obtained for MFC without gain (left) and with gain (right) for various curvatures radii.

Fig. 4
Fig. 4

Amplitude of the intermodal interference as a function of the curvature radius, when the MFC fiber is pumped (active) or not (passive).

Fig. 5
Fig. 5

spectrum of the inter-modal interference, as we inject and recombine the two proper axes of the fiber. The birefringence is revealed by the delay between the reference (peak 0) and the inter-LP01 interference (peak I). Right: power and phase images of the peaks, as defined in the table.

Fig. 6
Fig. 6

Left: evolution of the inter-modal interference spectra in a saturated Er-doped SI LMA fiber. Right: comparison of the S2 spectra for the lowest curvature radius used in the measurements for the LMA and the MFC fibers.

Tables (1)

Tables Icon

Table 1 List of the interference terms after the recombination of the crossed polarizations

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n g (i) ( ω 0 )= n eff (i) ( ω 0 )+ ω 0 . d n eff (i) dω | ω 0
Δ τ g =L n g (i) n g (j) c = L c ( n eff (i) ( ω 0 ) n eff (j) ( ω 0 )+ ω 0 .( d n eff (i) dω | ω 0 d n eff (j) dω | ω 0 ) )
Δ τ B = L c ( n eff (H) n eff (V) + ω 0 .( d n eff (H) dω d n eff (V) dω ) ) L c ( n eff (H) n eff (V) )= L c B

Metrics