Abstract

We present herein an original solution for the watermarking of holograms in binary graphic arts without unaesthetic diffractive effect. It is based on the Babinet principle of complementary diffractive structures adapted to Lohmann-type computer generated holograms. We introduce the concept and demonstrate its interest for anti-counterfeiting applications with the decoding of a hidden data matrix. A process of thermal lithography is used for the manufacturing of binary graphic arts containing complementary computer generated holograms.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Lohmann and D. P. Paris, “Binary fraunhofer holograms, generated by computer,” Appl. Opt. 6(10), 1739–1748 (1967).
    [CrossRef] [PubMed]
  2. D. Leseberg and O. Bryngdahl, “Computer-generated rainbow holograms,” Appl. Opt. 23(14), 2441–2447 (1984).
    [CrossRef] [PubMed]
  3. M. Gerspach, S. Noehte, and S. Borsmüller, “Holographic polymer data storage medium as a security label,” Photonik. International. 30–32 (2009).
  4. J. H. M. Neijzen, E. R. Meinders, and H. van Santen, “Liquid immersion deep-UV optical disc mastering for Blu-Ray disc read-only memory,” Jpn. J. Appl. Phys. 43(7B), 5047–5052 (2004).
    [CrossRef]
  5. E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(6B), 3987–3992 (2007).
    [CrossRef]
  6. Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405 nm laser thermal lithography of 40 nm pattern using super resolution organic resist material,” Appl. Phys. Express 2(12), 126502 (2009).
    [CrossRef]
  7. K. Kurihara, C. Rockstuhl, S. Petit, Y. Yamakawa, and J. Tominaga, “Plasmonic devices with controllable resonances--an avenue towards high-speed and mass fabrication of optical meta-materials,” J. Microsc. 229(Pt 3), 396–401 (2008).
    [CrossRef] [PubMed]
  8. K. Kurihara, Y. Suzuki, K. Suto, N. Shiba, T. Nakano, and J. Tominaga, “Wettability control using large-area nanostructured film,” Microelectron. Eng. 87(5-8), 1424–1427 (2010).
    [CrossRef]
  9. C. Martinez, A. Fargeix, O. Lemonnier, B. Martin, M. Armand, and R. Templier, “Blu-Ray mastering process applied to the manufacturing of computer generated holograms,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWD5.
  10. B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5(6), 967–969 (1966).
    [CrossRef] [PubMed]
  11. W. H. Lee, “Binary computer-generated holograms,” Appl. Opt. 18(21), 3661–3669 (1979).
    [CrossRef] [PubMed]
  12. P. Chavel and J. P. Hugonin, “High-quality computer holograms - problem of phase representation,” J. Opt. Soc. Am. 66(10), 989–996 (1976).
    [CrossRef]
  13. J. P. Allebach, “Representation-related errors in binary digital holograms: a unified analysis,” Appl. Opt. 20(2), 290–299 (1981).
    [CrossRef] [PubMed]
  14. G. Tricoles, “Computer generated holograms: an historical review,” Appl. Opt. 26(20), 4351–4357 (1987).
    [CrossRef] [PubMed]
  15. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “Kinoform - a new wavefront reconstruction device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
    [CrossRef]
  16. C. B. Burckhardt, “Use of a random phase mask for the recording of fourier transform holograms of data masks,” Appl. Opt. 9(3), 695–700 (1970).
    [CrossRef] [PubMed]
  17. N. C. Gallagher, J. C. Angus, F. E. Coffield, R. V. Edwards, and J. A. Mann., “Binary phase digital reflection holograms: fabrication and potential applications,” Appl. Opt. 16(2), 413–417 (1977).
    [CrossRef] [PubMed]
  18. A. W. Lohmann and S. Sinzinges, “Local Babinet effect,” J. Opt. Soc. Am. A 9(7), 1154–1158 (1992).
    [CrossRef]
  19. J. Chatelain and G. Priuli, Vieux objets en bois de la montagne, ed. Glenat (Libris, 2004).

2010

K. Kurihara, Y. Suzuki, K. Suto, N. Shiba, T. Nakano, and J. Tominaga, “Wettability control using large-area nanostructured film,” Microelectron. Eng. 87(5-8), 1424–1427 (2010).
[CrossRef]

2009

Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405 nm laser thermal lithography of 40 nm pattern using super resolution organic resist material,” Appl. Phys. Express 2(12), 126502 (2009).
[CrossRef]

2008

K. Kurihara, C. Rockstuhl, S. Petit, Y. Yamakawa, and J. Tominaga, “Plasmonic devices with controllable resonances--an avenue towards high-speed and mass fabrication of optical meta-materials,” J. Microsc. 229(Pt 3), 396–401 (2008).
[CrossRef] [PubMed]

2007

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(6B), 3987–3992 (2007).
[CrossRef]

2004

J. H. M. Neijzen, E. R. Meinders, and H. van Santen, “Liquid immersion deep-UV optical disc mastering for Blu-Ray disc read-only memory,” Jpn. J. Appl. Phys. 43(7B), 5047–5052 (2004).
[CrossRef]

1992

1987

1984

1981

1979

1977

1976

1970

1969

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “Kinoform - a new wavefront reconstruction device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
[CrossRef]

1967

1966

Allebach, J. P.

Angus, J. C.

Brown, B. R.

Bruls, D.

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(6B), 3987–3992 (2007).
[CrossRef]

Bryngdahl, O.

Bulle, H.

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(6B), 3987–3992 (2007).
[CrossRef]

Burckhardt, C. B.

Chavel, P.

Coffield, F. E.

Edwards, R. V.

El Majdoubi, H.

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(6B), 3987–3992 (2007).
[CrossRef]

Gallagher, N. C.

Hirsch, P. M.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “Kinoform - a new wavefront reconstruction device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
[CrossRef]

Hugonin, J. P.

Ichikawa, K.

Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405 nm laser thermal lithography of 40 nm pattern using super resolution organic resist material,” Appl. Phys. Express 2(12), 126502 (2009).
[CrossRef]

Jordan, J. A.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “Kinoform - a new wavefront reconstruction device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
[CrossRef]

Kanazawa, Y.

Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405 nm laser thermal lithography of 40 nm pattern using super resolution organic resist material,” Appl. Phys. Express 2(12), 126502 (2009).
[CrossRef]

Kawai, H.

Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405 nm laser thermal lithography of 40 nm pattern using super resolution organic resist material,” Appl. Phys. Express 2(12), 126502 (2009).
[CrossRef]

Kurihara, K.

K. Kurihara, Y. Suzuki, K. Suto, N. Shiba, T. Nakano, and J. Tominaga, “Wettability control using large-area nanostructured film,” Microelectron. Eng. 87(5-8), 1424–1427 (2010).
[CrossRef]

K. Kurihara, C. Rockstuhl, S. Petit, Y. Yamakawa, and J. Tominaga, “Plasmonic devices with controllable resonances--an avenue towards high-speed and mass fabrication of optical meta-materials,” J. Microsc. 229(Pt 3), 396–401 (2008).
[CrossRef] [PubMed]

Lee, W. H.

Leseberg, D.

Lesem, L. B.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “Kinoform - a new wavefront reconstruction device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
[CrossRef]

Lohmann, A. W.

Mann, J. A.

Meinders, E. R.

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(6B), 3987–3992 (2007).
[CrossRef]

J. H. M. Neijzen, E. R. Meinders, and H. van Santen, “Liquid immersion deep-UV optical disc mastering for Blu-Ray disc read-only memory,” Jpn. J. Appl. Phys. 43(7B), 5047–5052 (2004).
[CrossRef]

Millet, A.

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(6B), 3987–3992 (2007).
[CrossRef]

Nakano, T.

K. Kurihara, Y. Suzuki, K. Suto, N. Shiba, T. Nakano, and J. Tominaga, “Wettability control using large-area nanostructured film,” Microelectron. Eng. 87(5-8), 1424–1427 (2010).
[CrossRef]

Neijzen, J. H. M.

J. H. M. Neijzen, E. R. Meinders, and H. van Santen, “Liquid immersion deep-UV optical disc mastering for Blu-Ray disc read-only memory,” Jpn. J. Appl. Phys. 43(7B), 5047–5052 (2004).
[CrossRef]

Paris, D. P.

Peeters, P.

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(6B), 3987–3992 (2007).
[CrossRef]

Petit, S.

K. Kurihara, C. Rockstuhl, S. Petit, Y. Yamakawa, and J. Tominaga, “Plasmonic devices with controllable resonances--an avenue towards high-speed and mass fabrication of optical meta-materials,” J. Microsc. 229(Pt 3), 396–401 (2008).
[CrossRef] [PubMed]

Rastogi, R.

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(6B), 3987–3992 (2007).
[CrossRef]

Rockstuhl, C.

K. Kurihara, C. Rockstuhl, S. Petit, Y. Yamakawa, and J. Tominaga, “Plasmonic devices with controllable resonances--an avenue towards high-speed and mass fabrication of optical meta-materials,” J. Microsc. 229(Pt 3), 396–401 (2008).
[CrossRef] [PubMed]

Shiba, N.

K. Kurihara, Y. Suzuki, K. Suto, N. Shiba, T. Nakano, and J. Tominaga, “Wettability control using large-area nanostructured film,” Microelectron. Eng. 87(5-8), 1424–1427 (2010).
[CrossRef]

Sinzinges, S.

Suto, K.

K. Kurihara, Y. Suzuki, K. Suto, N. Shiba, T. Nakano, and J. Tominaga, “Wettability control using large-area nanostructured film,” Microelectron. Eng. 87(5-8), 1424–1427 (2010).
[CrossRef]

Suzuki, Y.

K. Kurihara, Y. Suzuki, K. Suto, N. Shiba, T. Nakano, and J. Tominaga, “Wettability control using large-area nanostructured film,” Microelectron. Eng. 87(5-8), 1424–1427 (2010).
[CrossRef]

Taga, K.

Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405 nm laser thermal lithography of 40 nm pattern using super resolution organic resist material,” Appl. Phys. Express 2(12), 126502 (2009).
[CrossRef]

Tominaga, J.

K. Kurihara, Y. Suzuki, K. Suto, N. Shiba, T. Nakano, and J. Tominaga, “Wettability control using large-area nanostructured film,” Microelectron. Eng. 87(5-8), 1424–1427 (2010).
[CrossRef]

K. Kurihara, C. Rockstuhl, S. Petit, Y. Yamakawa, and J. Tominaga, “Plasmonic devices with controllable resonances--an avenue towards high-speed and mass fabrication of optical meta-materials,” J. Microsc. 229(Pt 3), 396–401 (2008).
[CrossRef] [PubMed]

Tricoles, G.

Usami, Y.

Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405 nm laser thermal lithography of 40 nm pattern using super resolution organic resist material,” Appl. Phys. Express 2(12), 126502 (2009).
[CrossRef]

van der Veer, M.

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(6B), 3987–3992 (2007).
[CrossRef]

van Santen, H.

J. H. M. Neijzen, E. R. Meinders, and H. van Santen, “Liquid immersion deep-UV optical disc mastering for Blu-Ray disc read-only memory,” Jpn. J. Appl. Phys. 43(7B), 5047–5052 (2004).
[CrossRef]

Watanabe, T.

Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405 nm laser thermal lithography of 40 nm pattern using super resolution organic resist material,” Appl. Phys. Express 2(12), 126502 (2009).
[CrossRef]

Yamakawa, Y.

K. Kurihara, C. Rockstuhl, S. Petit, Y. Yamakawa, and J. Tominaga, “Plasmonic devices with controllable resonances--an avenue towards high-speed and mass fabrication of optical meta-materials,” J. Microsc. 229(Pt 3), 396–401 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Express

Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405 nm laser thermal lithography of 40 nm pattern using super resolution organic resist material,” Appl. Phys. Express 2(12), 126502 (2009).
[CrossRef]

IBM J. Res. Develop.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “Kinoform - a new wavefront reconstruction device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
[CrossRef]

J. Microsc.

K. Kurihara, C. Rockstuhl, S. Petit, Y. Yamakawa, and J. Tominaga, “Plasmonic devices with controllable resonances--an avenue towards high-speed and mass fabrication of optical meta-materials,” J. Microsc. 229(Pt 3), 396–401 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

J. H. M. Neijzen, E. R. Meinders, and H. van Santen, “Liquid immersion deep-UV optical disc mastering for Blu-Ray disc read-only memory,” Jpn. J. Appl. Phys. 43(7B), 5047–5052 (2004).
[CrossRef]

E. R. Meinders, R. Rastogi, M. van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(6B), 3987–3992 (2007).
[CrossRef]

Microelectron. Eng.

K. Kurihara, Y. Suzuki, K. Suto, N. Shiba, T. Nakano, and J. Tominaga, “Wettability control using large-area nanostructured film,” Microelectron. Eng. 87(5-8), 1424–1427 (2010).
[CrossRef]

Other

C. Martinez, A. Fargeix, O. Lemonnier, B. Martin, M. Armand, and R. Templier, “Blu-Ray mastering process applied to the manufacturing of computer generated holograms,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWD5.

J. Chatelain and G. Priuli, Vieux objets en bois de la montagne, ed. Glenat (Libris, 2004).

M. Gerspach, S. Noehte, and S. Borsmüller, “Holographic polymer data storage medium as a security label,” Photonik. International. 30–32 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Principle of thermal lithography on PTM: (a) PTM modification under laser exposure, (b) PTM layer after etching, (c) AFM view of a PTM layer after various laser exposure scans, before etching.

Fig. 2
Fig. 2

Schematic view of the Laser Beam Recorder used to manufacture graphic artworks with embedded holograms. The images G and I, visually and holographically reproduced for demonstration are shown on the left.

Fig. 3
Fig. 3

(a) Principle of the coding of phase and amplitude of a hologram by the size and the location of an elliptical pattern in a cell of size Λ. (b) Principle of the manufacturing of a hologram pattern with direct laser writing system.

Fig. 4
Fig. 4

Optical setup used to read the hologram

Fig. 5
Fig. 5

Simulation of the recovered intensity in the plane of the imaging sensor.

Fig. 6
Fig. 6

Radius coefficients wx and wy distribution (resp. green and blue curve) and normalized histogram of the hologram function (orange bars).

Fig. 7
Fig. 7

(a) CGH cell with an elliptical pattern. (b) Same hologram cell with contrast inversion. (c) Same hologram cell with contrast inversion and phase correction.

Fig. 8
Fig. 8

(a) Macroscopic photography of graphic arts G. (b) Microscopic view of complementary hologram structure H”'.

Fig. 9
Fig. 9

Result of hologram recovery on the imaging sensor: (a) uniform hologram H, (b) truncated hologram H', (c) out of phase hologram H”, (d) complementary hologram H”'.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

H( x h , y h )= n,m C nm ( x h , y h ) = n,m D( 2 x h ( n+ d nm )Λ w x nm Λ ,2 y h mΛ w y nm Λ )
D( x,y ) =1 if x 2 + y 2 1 =0 if x 2 + y 2 >1
H ˜ ( ν x , ν y )= n,m C nm ( x h , y h ) e 2πi( x h ν x + y h ν y ) d x h d y h
H ˜ ( ν x , ν y )= n,m [ Λw x nm w y nm J 1 ( πΛρ ) 2ρ e 2πi ν x d nm Λ ]× e 2πi( Λ ν x ×n+Λ ν y ×m )
H ˜ kl = n,m [ A nm e α nm ]× e 2πi( k N ×n+ l N ×m )
A nm = w y nm 2 J 1 ( π.w x nm )
α nm =2π. d nm
A nm mod[ DFT ( I ) nm ]
α nm =arg[ DFT ( I ) nm ]+dx×n+dy×n
E( x h , y h )× H 1 ( x h , y h )I( x s , y s )
E( x h , y h )× H 2 ( x h , y h ) = E( x h , y h )×[ 1 H 1 ( x h , y h ) ] δ( x s , y s )I( x s , y s )=δ( x s , y s )+I( x s , y s )× e iπ
H = H 1 ×G+ H 2 ×( 1G )
H = H 1 ×G+ H 3 ×( 1G )

Metrics