Abstract

Silicon photodiodes with high photoconductive gain are demonstrated. The photodiodes are fabricated in a complementary metal-oxide-semiconductor (CMOS)-compatible process. The typical room temperature responsivity at 940 nm is >20 A/W and the dark current density is ∼100 nA/cm2 at 5 V reverse bias, yielding a detectivity of ∼1014 Jones. These photodiodes are good candidates for applications that require high detection sensitivity and low bias operation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Bube, Photoconductivity of Solids (Krieger Publishing, 1960), pp 365–367.
  2. S. Espevik, C. Wu, and R. H. Bube, “Mechanism of photoconductivity in chemically deposited lead sulfide layers,” J. Appl. Phys. 42, 3513–3529 (1971).
    [CrossRef]
  3. P. H. Wendland, “New large area CdS photoconductor,” Rev. Sci. Instrum. 33, 337–339 (1962).
    [CrossRef]
  4. H. Chen, M. K. F. Lo, G. Yang, H. G. Monbouquette, and Y. Yang, “Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene,” Nat. Nanotechnol. 3, 543–547 (2008).
    [CrossRef] [PubMed]
  5. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clofford, E. Klem, L. Levina, and E. H. Sargent, “Ultra-sensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
    [CrossRef] [PubMed]
  6. G. Konstantatos and E. H. Sargent, “PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain,” Appl. Phys. Lett. 91, 173505 (2007).
    [CrossRef]
  7. G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photon. 1, 531–534 (2007).
    [CrossRef]
  8. G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8, 1446–1450 (2008).
    [CrossRef] [PubMed]
  9. A. F. Sklensky and R. H. Bube, “Photoelectronic properties of zinc impurity in silicon,” Phys. Rev. 6, 1328–1336 (1972).
    [CrossRef]
  10. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, New Jersey2007).
  11. J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30, 1773–1775 (2005).
    [CrossRef] [PubMed]
  12. M. U. Pralle, J. E. Carey, H. Homayoon, S. Alie, J. Sickler, X. Li, J. Jiang, D. Miller, C. Palsule, and J. McKee, “Black silicon enhanced photodetectors: a path to IR CMOS,” Proc. SPIE 7660, 76600N (2010).
    [CrossRef]
  13. http://sales.hamamatsu.com/assets/pdf/parts_S/s8745-01_etc_kspd1065e01.pdf .
  14. R. Steadman, F. M. Serrano, G. Vogtmeier, A. Kemna, E. Oezkan, W. Brockherde, and B. J. Hosticka, “A CMOS photodiode array with in-pixel data acquisition system for computed tomography,” IEEE J. Solid-State Circuits 39, 1034–1043 (2004)
    [CrossRef]

2010 (1)

M. U. Pralle, J. E. Carey, H. Homayoon, S. Alie, J. Sickler, X. Li, J. Jiang, D. Miller, C. Palsule, and J. McKee, “Black silicon enhanced photodetectors: a path to IR CMOS,” Proc. SPIE 7660, 76600N (2010).
[CrossRef]

2008 (2)

H. Chen, M. K. F. Lo, G. Yang, H. G. Monbouquette, and Y. Yang, “Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene,” Nat. Nanotechnol. 3, 543–547 (2008).
[CrossRef] [PubMed]

G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8, 1446–1450 (2008).
[CrossRef] [PubMed]

2007 (2)

G. Konstantatos and E. H. Sargent, “PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain,” Appl. Phys. Lett. 91, 173505 (2007).
[CrossRef]

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photon. 1, 531–534 (2007).
[CrossRef]

2006 (1)

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clofford, E. Klem, L. Levina, and E. H. Sargent, “Ultra-sensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

R. Steadman, F. M. Serrano, G. Vogtmeier, A. Kemna, E. Oezkan, W. Brockherde, and B. J. Hosticka, “A CMOS photodiode array with in-pixel data acquisition system for computed tomography,” IEEE J. Solid-State Circuits 39, 1034–1043 (2004)
[CrossRef]

1972 (1)

A. F. Sklensky and R. H. Bube, “Photoelectronic properties of zinc impurity in silicon,” Phys. Rev. 6, 1328–1336 (1972).
[CrossRef]

1971 (1)

S. Espevik, C. Wu, and R. H. Bube, “Mechanism of photoconductivity in chemically deposited lead sulfide layers,” J. Appl. Phys. 42, 3513–3529 (1971).
[CrossRef]

1962 (1)

P. H. Wendland, “New large area CdS photoconductor,” Rev. Sci. Instrum. 33, 337–339 (1962).
[CrossRef]

Alie, S.

M. U. Pralle, J. E. Carey, H. Homayoon, S. Alie, J. Sickler, X. Li, J. Jiang, D. Miller, C. Palsule, and J. McKee, “Black silicon enhanced photodetectors: a path to IR CMOS,” Proc. SPIE 7660, 76600N (2010).
[CrossRef]

Brockherde, W.

R. Steadman, F. M. Serrano, G. Vogtmeier, A. Kemna, E. Oezkan, W. Brockherde, and B. J. Hosticka, “A CMOS photodiode array with in-pixel data acquisition system for computed tomography,” IEEE J. Solid-State Circuits 39, 1034–1043 (2004)
[CrossRef]

Bube, R. H.

A. F. Sklensky and R. H. Bube, “Photoelectronic properties of zinc impurity in silicon,” Phys. Rev. 6, 1328–1336 (1972).
[CrossRef]

S. Espevik, C. Wu, and R. H. Bube, “Mechanism of photoconductivity in chemically deposited lead sulfide layers,” J. Appl. Phys. 42, 3513–3529 (1971).
[CrossRef]

R. H. Bube, Photoconductivity of Solids (Krieger Publishing, 1960), pp 365–367.

Carey, J. E.

M. U. Pralle, J. E. Carey, H. Homayoon, S. Alie, J. Sickler, X. Li, J. Jiang, D. Miller, C. Palsule, and J. McKee, “Black silicon enhanced photodetectors: a path to IR CMOS,” Proc. SPIE 7660, 76600N (2010).
[CrossRef]

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30, 1773–1775 (2005).
[CrossRef] [PubMed]

Chen, H.

H. Chen, M. K. F. Lo, G. Yang, H. G. Monbouquette, and Y. Yang, “Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene,” Nat. Nanotechnol. 3, 543–547 (2008).
[CrossRef] [PubMed]

Clifford, J.

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photon. 1, 531–534 (2007).
[CrossRef]

Clofford, J.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clofford, E. Klem, L. Levina, and E. H. Sargent, “Ultra-sensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[CrossRef] [PubMed]

Crouch, C. H.

Espevik, S.

S. Espevik, C. Wu, and R. H. Bube, “Mechanism of photoconductivity in chemically deposited lead sulfide layers,” J. Appl. Phys. 42, 3513–3529 (1971).
[CrossRef]

Fischer, A.

G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8, 1446–1450 (2008).
[CrossRef] [PubMed]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clofford, E. Klem, L. Levina, and E. H. Sargent, “Ultra-sensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[CrossRef] [PubMed]

Homayoon, H.

M. U. Pralle, J. E. Carey, H. Homayoon, S. Alie, J. Sickler, X. Li, J. Jiang, D. Miller, C. Palsule, and J. McKee, “Black silicon enhanced photodetectors: a path to IR CMOS,” Proc. SPIE 7660, 76600N (2010).
[CrossRef]

Hoogland, S.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clofford, E. Klem, L. Levina, and E. H. Sargent, “Ultra-sensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[CrossRef] [PubMed]

Hosticka, B. J.

R. Steadman, F. M. Serrano, G. Vogtmeier, A. Kemna, E. Oezkan, W. Brockherde, and B. J. Hosticka, “A CMOS photodiode array with in-pixel data acquisition system for computed tomography,” IEEE J. Solid-State Circuits 39, 1034–1043 (2004)
[CrossRef]

Howard, I.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clofford, E. Klem, L. Levina, and E. H. Sargent, “Ultra-sensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[CrossRef] [PubMed]

Jiang, J.

M. U. Pralle, J. E. Carey, H. Homayoon, S. Alie, J. Sickler, X. Li, J. Jiang, D. Miller, C. Palsule, and J. McKee, “Black silicon enhanced photodetectors: a path to IR CMOS,” Proc. SPIE 7660, 76600N (2010).
[CrossRef]

Kemna, A.

R. Steadman, F. M. Serrano, G. Vogtmeier, A. Kemna, E. Oezkan, W. Brockherde, and B. J. Hosticka, “A CMOS photodiode array with in-pixel data acquisition system for computed tomography,” IEEE J. Solid-State Circuits 39, 1034–1043 (2004)
[CrossRef]

Klem, E.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clofford, E. Klem, L. Levina, and E. H. Sargent, “Ultra-sensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[CrossRef] [PubMed]

Konstantatos, G.

G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8, 1446–1450 (2008).
[CrossRef] [PubMed]

G. Konstantatos and E. H. Sargent, “PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain,” Appl. Phys. Lett. 91, 173505 (2007).
[CrossRef]

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photon. 1, 531–534 (2007).
[CrossRef]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clofford, E. Klem, L. Levina, and E. H. Sargent, “Ultra-sensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[CrossRef] [PubMed]

Levina, L.

G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8, 1446–1450 (2008).
[CrossRef] [PubMed]

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photon. 1, 531–534 (2007).
[CrossRef]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clofford, E. Klem, L. Levina, and E. H. Sargent, “Ultra-sensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[CrossRef] [PubMed]

Li, X.

M. U. Pralle, J. E. Carey, H. Homayoon, S. Alie, J. Sickler, X. Li, J. Jiang, D. Miller, C. Palsule, and J. McKee, “Black silicon enhanced photodetectors: a path to IR CMOS,” Proc. SPIE 7660, 76600N (2010).
[CrossRef]

Lo, M. K. F.

H. Chen, M. K. F. Lo, G. Yang, H. G. Monbouquette, and Y. Yang, “Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene,” Nat. Nanotechnol. 3, 543–547 (2008).
[CrossRef] [PubMed]

Mazur, E.

McKee, J.

M. U. Pralle, J. E. Carey, H. Homayoon, S. Alie, J. Sickler, X. Li, J. Jiang, D. Miller, C. Palsule, and J. McKee, “Black silicon enhanced photodetectors: a path to IR CMOS,” Proc. SPIE 7660, 76600N (2010).
[CrossRef]

Miller, D.

M. U. Pralle, J. E. Carey, H. Homayoon, S. Alie, J. Sickler, X. Li, J. Jiang, D. Miller, C. Palsule, and J. McKee, “Black silicon enhanced photodetectors: a path to IR CMOS,” Proc. SPIE 7660, 76600N (2010).
[CrossRef]

Monbouquette, H. G.

H. Chen, M. K. F. Lo, G. Yang, H. G. Monbouquette, and Y. Yang, “Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene,” Nat. Nanotechnol. 3, 543–547 (2008).
[CrossRef] [PubMed]

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, New Jersey2007).

Oezkan, E.

R. Steadman, F. M. Serrano, G. Vogtmeier, A. Kemna, E. Oezkan, W. Brockherde, and B. J. Hosticka, “A CMOS photodiode array with in-pixel data acquisition system for computed tomography,” IEEE J. Solid-State Circuits 39, 1034–1043 (2004)
[CrossRef]

Palsule, C.

M. U. Pralle, J. E. Carey, H. Homayoon, S. Alie, J. Sickler, X. Li, J. Jiang, D. Miller, C. Palsule, and J. McKee, “Black silicon enhanced photodetectors: a path to IR CMOS,” Proc. SPIE 7660, 76600N (2010).
[CrossRef]

Pralle, M. U.

M. U. Pralle, J. E. Carey, H. Homayoon, S. Alie, J. Sickler, X. Li, J. Jiang, D. Miller, C. Palsule, and J. McKee, “Black silicon enhanced photodetectors: a path to IR CMOS,” Proc. SPIE 7660, 76600N (2010).
[CrossRef]

Sargent, E. H.

G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8, 1446–1450 (2008).
[CrossRef] [PubMed]

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photon. 1, 531–534 (2007).
[CrossRef]

G. Konstantatos and E. H. Sargent, “PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain,” Appl. Phys. Lett. 91, 173505 (2007).
[CrossRef]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clofford, E. Klem, L. Levina, and E. H. Sargent, “Ultra-sensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[CrossRef] [PubMed]

Serrano, F. M.

R. Steadman, F. M. Serrano, G. Vogtmeier, A. Kemna, E. Oezkan, W. Brockherde, and B. J. Hosticka, “A CMOS photodiode array with in-pixel data acquisition system for computed tomography,” IEEE J. Solid-State Circuits 39, 1034–1043 (2004)
[CrossRef]

Shen, M.

Sickler, J.

M. U. Pralle, J. E. Carey, H. Homayoon, S. Alie, J. Sickler, X. Li, J. Jiang, D. Miller, C. Palsule, and J. McKee, “Black silicon enhanced photodetectors: a path to IR CMOS,” Proc. SPIE 7660, 76600N (2010).
[CrossRef]

Sklensky, A. F.

A. F. Sklensky and R. H. Bube, “Photoelectronic properties of zinc impurity in silicon,” Phys. Rev. 6, 1328–1336 (1972).
[CrossRef]

Steadman, R.

R. Steadman, F. M. Serrano, G. Vogtmeier, A. Kemna, E. Oezkan, W. Brockherde, and B. J. Hosticka, “A CMOS photodiode array with in-pixel data acquisition system for computed tomography,” IEEE J. Solid-State Circuits 39, 1034–1043 (2004)
[CrossRef]

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, New Jersey2007).

Vogtmeier, G.

R. Steadman, F. M. Serrano, G. Vogtmeier, A. Kemna, E. Oezkan, W. Brockherde, and B. J. Hosticka, “A CMOS photodiode array with in-pixel data acquisition system for computed tomography,” IEEE J. Solid-State Circuits 39, 1034–1043 (2004)
[CrossRef]

Wendland, P. H.

P. H. Wendland, “New large area CdS photoconductor,” Rev. Sci. Instrum. 33, 337–339 (1962).
[CrossRef]

Wu, C.

S. Espevik, C. Wu, and R. H. Bube, “Mechanism of photoconductivity in chemically deposited lead sulfide layers,” J. Appl. Phys. 42, 3513–3529 (1971).
[CrossRef]

Yang, G.

H. Chen, M. K. F. Lo, G. Yang, H. G. Monbouquette, and Y. Yang, “Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene,” Nat. Nanotechnol. 3, 543–547 (2008).
[CrossRef] [PubMed]

Yang, Y.

H. Chen, M. K. F. Lo, G. Yang, H. G. Monbouquette, and Y. Yang, “Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene,” Nat. Nanotechnol. 3, 543–547 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

G. Konstantatos and E. H. Sargent, “PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain,” Appl. Phys. Lett. 91, 173505 (2007).
[CrossRef]

IEEE J. Solid-State Circuits (1)

R. Steadman, F. M. Serrano, G. Vogtmeier, A. Kemna, E. Oezkan, W. Brockherde, and B. J. Hosticka, “A CMOS photodiode array with in-pixel data acquisition system for computed tomography,” IEEE J. Solid-State Circuits 39, 1034–1043 (2004)
[CrossRef]

J. Appl. Phys. (1)

S. Espevik, C. Wu, and R. H. Bube, “Mechanism of photoconductivity in chemically deposited lead sulfide layers,” J. Appl. Phys. 42, 3513–3529 (1971).
[CrossRef]

Nano Lett. (1)

G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, “Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states,” Nano Lett. 8, 1446–1450 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

H. Chen, M. K. F. Lo, G. Yang, H. G. Monbouquette, and Y. Yang, “Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene,” Nat. Nanotechnol. 3, 543–547 (2008).
[CrossRef] [PubMed]

Nat. Photon. (1)

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, “Sensitive solution-processed visible-wavelength photodetectors,” Nat. Photon. 1, 531–534 (2007).
[CrossRef]

Nature (1)

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clofford, E. Klem, L. Levina, and E. H. Sargent, “Ultra-sensitive solution-cast quantum dot photodetectors,” Nature 442, 180–183 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. (1)

A. F. Sklensky and R. H. Bube, “Photoelectronic properties of zinc impurity in silicon,” Phys. Rev. 6, 1328–1336 (1972).
[CrossRef]

Proc. SPIE (1)

M. U. Pralle, J. E. Carey, H. Homayoon, S. Alie, J. Sickler, X. Li, J. Jiang, D. Miller, C. Palsule, and J. McKee, “Black silicon enhanced photodetectors: a path to IR CMOS,” Proc. SPIE 7660, 76600N (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

P. H. Wendland, “New large area CdS photoconductor,” Rev. Sci. Instrum. 33, 337–339 (1962).
[CrossRef]

Other (3)

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, New Jersey2007).

http://sales.hamamatsu.com/assets/pdf/parts_S/s8745-01_etc_kspd1065e01.pdf .

R. H. Bube, Photoconductivity of Solids (Krieger Publishing, 1960), pp 365–367.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) I–V characteristics in the dark of a high photoconductive gain silicon photoconductor (black dash) and photodiode (blue solid). (b) I–V characteristics under illumination (red solid) and in the dark (black dash) of a silicon photodiode with high photoconductive gain. (c) Device schematic of the photoconductive gain photodiode with an active region and a guard ring. (d) Dark current density plotted as a function of guard ring bias voltage with the photoconductive gain photodiode biased at 5 V reverse bias.

Fig. 2
Fig. 2

A representative photo response spectrum from a silicon photodiode with photoconductive gain. The diode in the measurement was operated at 5 V reverse bias. The dashed line shows the responsivity corresponding to 100% QE at various wavelengths.

Fig. 3
Fig. 3

(a) An Arrhenius plot of photo response vs. temperature revealing a trap state with an activation energy ∼0.32 eV. (b) Representative rise and fall tails of the photodiode at 5 V reverse bias with 660 nm LED modulation. (c)–(d) Arrhenius plots of (c) fall and (d) rise times (T90) vs. temperatures.

Metrics