Abstract

We proposed and demonstrated a simple but deterministic scheme for generating polarization-entangled photon pairs at telecommunication wavelengths with type-II quasi-phase-matched spontaneous parametric down-conversion (QPM-SPDC) having two poling periods. We fabricated a LiNbO3 crystal having two poling periods so as to generate entangled photons at two wavelengths, i.e., 1506 nm and 1594 nm. We characterized the two-photon polarization state with state tomography and confirmed that the state was highly entangled.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bellfs inequalities using time- varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).
    [CrossRef]
  2. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef] [PubMed]
  3. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [CrossRef] [PubMed]
  4. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [CrossRef] [PubMed]
  5. S. Tanzilli, W. Tittel, H. D. Riedmatten, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
    [CrossRef]
  6. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “Highflux source of polarization-entangled photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
    [CrossRef]
  7. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
    [CrossRef]
  8. Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact sources of narrow-band counter-propagation polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A 84, 053825 (2011).
    [CrossRef]
  9. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]
  10. M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22, 243–244 (1966).
    [CrossRef]
  11. M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in Type-II optical parametric down-conversion,” Phys. Rev.A 50, 5122–5133 (1994).
    [CrossRef] [PubMed]
  12. Y.-H. Kim and W. P. Grice, “Generation of pulsed polarization-entangled two-photon state via temporal and spectral engineering,” J. Mod. Opt. 49, 2309–2323 (2002).
    [CrossRef]
  13. Y.-H. Kim, S. P. Kulik, and Y. Shih, “Bell-state preparation using pulsed nondegenerate two-photon entanglement,” Phys. Rev. A,  63, 060301(R) (2001).
    [CrossRef]
  14. S. Nagano, M. Konishi, T. Shiomi, and M. Minakata, “Study on formation of small polarization domain inversion for high-efficiency quasi-phase-matched second-harmonic generation device,” Jpn. J. Appl. Phys. 42, 4334–4339 (2003).
    [CrossRef]
  15. S. Nagano, R. Shimizu, Y. Sugiura, K. Suizu, K. Edamatsu, and H. Ito, “800-nm band cross-polarized photon pair source using type-II parametric down-conversion in periodically poled lithium niobate,” Jpn. J. Appl. Phys. 46, L1064–L1067 (2007).
    [CrossRef]
  16. S. Nagano, A. Syouji, R. Shimizu, K. Suizu, H. Ito, and K. Edamatsu, “Generation of cross-polarized photon pairs via type-II third-order quasi-phase matched parametric down-conversion,” Jpn. J. Appl. Phys. 48, 050205 (2009).
    [CrossRef]
  17. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
    [CrossRef]
  18. S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
    [CrossRef]
  19. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
    [CrossRef]
  20. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A,  54, 3824–3851 (1996).
    [CrossRef] [PubMed]
  21. R. Shimizu and K. Edamatsu, “High-flux and broadband biphoton sources with controlled frequency entanglement,” Opt. Express 17, 16385–16393 (2009).
    [CrossRef] [PubMed]

2011

Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact sources of narrow-band counter-propagation polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A 84, 053825 (2011).
[CrossRef]

2009

S. Nagano, A. Syouji, R. Shimizu, K. Suizu, H. Ito, and K. Edamatsu, “Generation of cross-polarized photon pairs via type-II third-order quasi-phase matched parametric down-conversion,” Jpn. J. Appl. Phys. 48, 050205 (2009).
[CrossRef]

R. Shimizu and K. Edamatsu, “High-flux and broadband biphoton sources with controlled frequency entanglement,” Opt. Express 17, 16385–16393 (2009).
[CrossRef] [PubMed]

2007

S. Nagano, R. Shimizu, Y. Sugiura, K. Suizu, K. Edamatsu, and H. Ito, “800-nm band cross-polarized photon pair source using type-II parametric down-conversion in periodically poled lithium niobate,” Jpn. J. Appl. Phys. 46, L1064–L1067 (2007).
[CrossRef]

2006

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[CrossRef]

2004

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “Highflux source of polarization-entangled photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

2003

S. Nagano, M. Konishi, T. Shiomi, and M. Minakata, “Study on formation of small polarization domain inversion for high-efficiency quasi-phase-matched second-harmonic generation device,” Jpn. J. Appl. Phys. 42, 4334–4339 (2003).
[CrossRef]

2002

Y.-H. Kim and W. P. Grice, “Generation of pulsed polarization-entangled two-photon state via temporal and spectral engineering,” J. Mod. Opt. 49, 2309–2323 (2002).
[CrossRef]

S. Tanzilli, W. Tittel, H. D. Riedmatten, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

2001

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Bell-state preparation using pulsed nondegenerate two-photon entanglement,” Phys. Rev. A,  63, 060301(R) (2001).
[CrossRef]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

1998

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

1997

1996

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A,  54, 3824–3851 (1996).
[CrossRef] [PubMed]

1995

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

1994

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in Type-II optical parametric down-conversion,” Phys. Rev.A 50, 5122–5133 (1994).
[CrossRef] [PubMed]

1993

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

1982

A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bellfs inequalities using time- varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).
[CrossRef]

1966

M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22, 243–244 (1966).
[CrossRef]

Aspect, A.

A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bellfs inequalities using time- varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).
[CrossRef]

Baldi, P.

S. Tanzilli, W. Tittel, H. D. Riedmatten, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

Bennett, C. H.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A,  54, 3824–3851 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Dalibard, J.

A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bellfs inequalities using time- varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).
[CrossRef]

DiVincenzo, D. P.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A,  54, 3824–3851 (1996).
[CrossRef] [PubMed]

Edamatsu, K.

S. Nagano, A. Syouji, R. Shimizu, K. Suizu, H. Ito, and K. Edamatsu, “Generation of cross-polarized photon pairs via type-II third-order quasi-phase matched parametric down-conversion,” Jpn. J. Appl. Phys. 48, 050205 (2009).
[CrossRef]

R. Shimizu and K. Edamatsu, “High-flux and broadband biphoton sources with controlled frequency entanglement,” Opt. Express 17, 16385–16393 (2009).
[CrossRef] [PubMed]

S. Nagano, R. Shimizu, Y. Sugiura, K. Suizu, K. Edamatsu, and H. Ito, “800-nm band cross-polarized photon pair source using type-II parametric down-conversion in periodically poled lithium niobate,” Jpn. J. Appl. Phys. 46, L1064–L1067 (2007).
[CrossRef]

Fiorentino, M.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “Highflux source of polarization-entangled photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Gisin, N.

S. Tanzilli, W. Tittel, H. D. Riedmatten, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

Gong, Y.-X.

Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact sources of narrow-band counter-propagation polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A 84, 053825 (2011).
[CrossRef]

Grice, W. P.

Y.-H. Kim and W. P. Grice, “Generation of pulsed polarization-entangled two-photon state via temporal and spectral engineering,” J. Mod. Opt. 49, 2309–2323 (2002).
[CrossRef]

Hill, S.

S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
[CrossRef]

Hobden, M. V.

M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22, 243–244 (1966).
[CrossRef]

Ito, H.

S. Nagano, A. Syouji, R. Shimizu, K. Suizu, H. Ito, and K. Edamatsu, “Generation of cross-polarized photon pairs via type-II third-order quasi-phase matched parametric down-conversion,” Jpn. J. Appl. Phys. 48, 050205 (2009).
[CrossRef]

S. Nagano, R. Shimizu, Y. Sugiura, K. Suizu, K. Edamatsu, and H. Ito, “800-nm band cross-polarized photon pair source using type-II parametric down-conversion in periodically poled lithium niobate,” Jpn. J. Appl. Phys. 46, L1064–L1067 (2007).
[CrossRef]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Jundt, D. H.

Kim, T.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[CrossRef]

Kim, Y.-H.

Y.-H. Kim and W. P. Grice, “Generation of pulsed polarization-entangled two-photon state via temporal and spectral engineering,” J. Mod. Opt. 49, 2309–2323 (2002).
[CrossRef]

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Bell-state preparation using pulsed nondegenerate two-photon entanglement,” Phys. Rev. A,  63, 060301(R) (2001).
[CrossRef]

Klyshko, D. N.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in Type-II optical parametric down-conversion,” Phys. Rev.A 50, 5122–5133 (1994).
[CrossRef] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Konishi, M.

S. Nagano, M. Konishi, T. Shiomi, and M. Minakata, “Study on formation of small polarization domain inversion for high-efficiency quasi-phase-matched second-harmonic generation device,” Jpn. J. Appl. Phys. 42, 4334–4339 (2003).
[CrossRef]

Kuklewicz, C. E.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “Highflux source of polarization-entangled photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Kulik, S. P.

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Bell-state preparation using pulsed nondegenerate two-photon entanglement,” Phys. Rev. A,  63, 060301(R) (2001).
[CrossRef]

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Messin, G.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “Highflux source of polarization-entangled photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Micheli, M. D.

S. Tanzilli, W. Tittel, H. D. Riedmatten, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Minakata, M.

S. Nagano, M. Konishi, T. Shiomi, and M. Minakata, “Study on formation of small polarization domain inversion for high-efficiency quasi-phase-matched second-harmonic generation device,” Jpn. J. Appl. Phys. 42, 4334–4339 (2003).
[CrossRef]

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Nagano, S.

S. Nagano, A. Syouji, R. Shimizu, K. Suizu, H. Ito, and K. Edamatsu, “Generation of cross-polarized photon pairs via type-II third-order quasi-phase matched parametric down-conversion,” Jpn. J. Appl. Phys. 48, 050205 (2009).
[CrossRef]

S. Nagano, R. Shimizu, Y. Sugiura, K. Suizu, K. Edamatsu, and H. Ito, “800-nm band cross-polarized photon pair source using type-II parametric down-conversion in periodically poled lithium niobate,” Jpn. J. Appl. Phys. 46, L1064–L1067 (2007).
[CrossRef]

S. Nagano, M. Konishi, T. Shiomi, and M. Minakata, “Study on formation of small polarization domain inversion for high-efficiency quasi-phase-matched second-harmonic generation device,” Jpn. J. Appl. Phys. 42, 4334–4339 (2003).
[CrossRef]

Ostrowsky, D. B.

S. Tanzilli, W. Tittel, H. D. Riedmatten, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Riedmatten, H. D.

S. Tanzilli, W. Tittel, H. D. Riedmatten, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

Roger, G.

A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bellfs inequalities using time- varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).
[CrossRef]

Rubin, M. H.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in Type-II optical parametric down-conversion,” Phys. Rev.A 50, 5122–5133 (1994).
[CrossRef] [PubMed]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in Type-II optical parametric down-conversion,” Phys. Rev.A 50, 5122–5133 (1994).
[CrossRef] [PubMed]

Shapiro, J. H.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “Highflux source of polarization-entangled photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Shih, Y.

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Bell-state preparation using pulsed nondegenerate two-photon entanglement,” Phys. Rev. A,  63, 060301(R) (2001).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Shih, Y. H.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in Type-II optical parametric down-conversion,” Phys. Rev.A 50, 5122–5133 (1994).
[CrossRef] [PubMed]

Shimizu, R.

R. Shimizu and K. Edamatsu, “High-flux and broadband biphoton sources with controlled frequency entanglement,” Opt. Express 17, 16385–16393 (2009).
[CrossRef] [PubMed]

S. Nagano, A. Syouji, R. Shimizu, K. Suizu, H. Ito, and K. Edamatsu, “Generation of cross-polarized photon pairs via type-II third-order quasi-phase matched parametric down-conversion,” Jpn. J. Appl. Phys. 48, 050205 (2009).
[CrossRef]

S. Nagano, R. Shimizu, Y. Sugiura, K. Suizu, K. Edamatsu, and H. Ito, “800-nm band cross-polarized photon pair source using type-II parametric down-conversion in periodically poled lithium niobate,” Jpn. J. Appl. Phys. 46, L1064–L1067 (2007).
[CrossRef]

Shiomi, T.

S. Nagano, M. Konishi, T. Shiomi, and M. Minakata, “Study on formation of small polarization domain inversion for high-efficiency quasi-phase-matched second-harmonic generation device,” Jpn. J. Appl. Phys. 42, 4334–4339 (2003).
[CrossRef]

Smolin, J. A.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A,  54, 3824–3851 (1996).
[CrossRef] [PubMed]

Sugiura, Y.

S. Nagano, R. Shimizu, Y. Sugiura, K. Suizu, K. Edamatsu, and H. Ito, “800-nm band cross-polarized photon pair source using type-II parametric down-conversion in periodically poled lithium niobate,” Jpn. J. Appl. Phys. 46, L1064–L1067 (2007).
[CrossRef]

Suizu, K.

S. Nagano, A. Syouji, R. Shimizu, K. Suizu, H. Ito, and K. Edamatsu, “Generation of cross-polarized photon pairs via type-II third-order quasi-phase matched parametric down-conversion,” Jpn. J. Appl. Phys. 48, 050205 (2009).
[CrossRef]

S. Nagano, R. Shimizu, Y. Sugiura, K. Suizu, K. Edamatsu, and H. Ito, “800-nm band cross-polarized photon pair source using type-II parametric down-conversion in periodically poled lithium niobate,” Jpn. J. Appl. Phys. 46, L1064–L1067 (2007).
[CrossRef]

Syouji, A.

S. Nagano, A. Syouji, R. Shimizu, K. Suizu, H. Ito, and K. Edamatsu, “Generation of cross-polarized photon pairs via type-II third-order quasi-phase matched parametric down-conversion,” Jpn. J. Appl. Phys. 48, 050205 (2009).
[CrossRef]

Tanzilli, S.

S. Tanzilli, W. Tittel, H. D. Riedmatten, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

Tittel, W.

S. Tanzilli, W. Tittel, H. D. Riedmatten, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

Warner, J.

M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22, 243–244 (1966).
[CrossRef]

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Wong, F. N. C.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “Highflux source of polarization-entangled photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Wootters, W. K.

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
[CrossRef]

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A,  54, 3824–3851 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Xie, Z.-D.

Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact sources of narrow-band counter-propagation polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A 84, 053825 (2011).
[CrossRef]

Xu, P.

Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact sources of narrow-band counter-propagation polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A 84, 053825 (2011).
[CrossRef]

Xue, P.

Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact sources of narrow-band counter-propagation polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A 84, 053825 (2011).
[CrossRef]

Yu, X.-Q.

Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact sources of narrow-band counter-propagation polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A 84, 053825 (2011).
[CrossRef]

Zbinden, H.

S. Tanzilli, W. Tittel, H. D. Riedmatten, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Zhu, S.-N.

Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact sources of narrow-band counter-propagation polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A 84, 053825 (2011).
[CrossRef]

Eur. Phys. J. D

S. Tanzilli, W. Tittel, H. D. Riedmatten, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[CrossRef]

J. Mod. Opt.

Y.-H. Kim and W. P. Grice, “Generation of pulsed polarization-entangled two-photon state via temporal and spectral engineering,” J. Mod. Opt. 49, 2309–2323 (2002).
[CrossRef]

Jpn. J. Appl. Phys.

S. Nagano, M. Konishi, T. Shiomi, and M. Minakata, “Study on formation of small polarization domain inversion for high-efficiency quasi-phase-matched second-harmonic generation device,” Jpn. J. Appl. Phys. 42, 4334–4339 (2003).
[CrossRef]

S. Nagano, R. Shimizu, Y. Sugiura, K. Suizu, K. Edamatsu, and H. Ito, “800-nm band cross-polarized photon pair source using type-II parametric down-conversion in periodically poled lithium niobate,” Jpn. J. Appl. Phys. 46, L1064–L1067 (2007).
[CrossRef]

S. Nagano, A. Syouji, R. Shimizu, K. Suizu, H. Ito, and K. Edamatsu, “Generation of cross-polarized photon pairs via type-II third-order quasi-phase matched parametric down-conversion,” Jpn. J. Appl. Phys. 48, 050205 (2009).
[CrossRef]

Nature

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Lett.

M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22, 243–244 (1966).
[CrossRef]

Phys. Rev. A

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Bell-state preparation using pulsed nondegenerate two-photon entanglement,” Phys. Rev. A,  63, 060301(R) (2001).
[CrossRef]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “Highflux source of polarization-entangled photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[CrossRef]

Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact sources of narrow-band counter-propagation polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A 84, 053825 (2011).
[CrossRef]

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A,  54, 3824–3851 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bellfs inequalities using time- varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
[CrossRef]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

Phys. Rev.A

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in Type-II optical parametric down-conversion,” Phys. Rev.A 50, 5122–5133 (1994).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Calculated tuning curves of the type-II collinear QPM-SPDC in PPLN pumped at λp=775 nm and T =166°C. Solid and dashed curves correspond to the ordinary and extraordinary rays having horizontal (H) and vertical (V) polarizations, respectively.

Fig. 2
Fig. 2

Two-period quasi-phase-matched device. The crystallographic axes of the lithium niobate crystal are referred to as x, y, and z. The pump (o-ray), signal (o-ray), and idler (e-ray) beams propagate collinearly along the x axis, having linear polarizations along y, y, and z, respectively.

Fig. 3
Fig. 3

Schematic of the experimental setup for polarization correlation measurement. SHG, second harmonics generator; PBS, polarizing beam splitter; QWP, quarter-wave plate; PA, polarization analyzer; D, detector

Fig. 4
Fig. 4

(a) Parametric emission spectra around 1510 nm and 1590 nm at various temperatures. (b) Temperature dependence of the peak positions in the parametric emission spectra.

Fig. 5
Fig. 5

Results of the polarization correlation measurement. Circles are the measured coincidence counts as a function of θ2 while θ1 was fixed at 0° or 90° in (a), ±45° in (b). The curves are calculated by Eqs. (10) and (11).

Fig. 6
Fig. 6

Real (left) and imaginary (right) parts of the reconstructed density matrices of the two-photon polarization state.

Fig. 7
Fig. 7

Plot of 〈ϕa|ϕb〉 as a function of t′.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

Δ k k p ( ω p ) k s ( ω s ) k i ( ω i ) = 0
Δ k QPM k p ( ω p ) k s ( ω s ) k i ( ω i ) 2 π Λ = 0 .
| Ψ = 1 2 ( | H , ω 1 | V , ω 2 | ϕ a + e i φ | V , ω 1 | H , ω 2 | ϕ b ) ,
φ = φ 0 = 2 π ( 1 Λ a 1 Λ b ) L b .
| Ψ = 1 2 ( | H V | ϕ a + e i φ | V H | ϕ b ) ,
ρ ( p ) = Tr ( ϕ ) | Ψ Ψ | = 1 2 ( | H V H V | + v | V H H V | + v * | H V V H | + | V H V H | ) ,
v = e i φ ϕ a | ϕ b .
φ = φ 0 + ω 1 ω 2 c Δ l ,
p ( θ 1 , θ 2 ) = 1 4 ( 1 cos 2 θ 1 cos 2 θ 2 + Re ( v ) sin 2 θ 1 sin 2 θ 2 ) .
p ( θ 2 ) = 1 4 ( 1 cos 2 θ 2 ) .
p ( θ 2 ) = 1 4 ( 1 ± Re ( v ) sin 2 θ 2 ) .
| ψ + = 1 2 ( | H V + | V H )
F = Ψ + | ρ | Ψ + = 0.94.
ϕ a | ϕ b = d t ϕ a * ( t ) ϕ b ( t ) ,
ϕ a ( t ) = { ( D a L a ) 1 D a L b t t D a ( L a + L b ) t 0 otherwise
ϕ b ( t ) = { ( D b L b ) 1 D b L b + t t t 0 otherwise ,
D a 1 u o ( ω 1 ) 1 u e ( ω 2 )
D b 1 u o ( ω 2 ) 1 u e ( ω 1 ) ,
ϕ a | ϕ b max = D a D b ,
φ = φ 0 + { k H ( ω 1 ) k V ( ω 2 ) + k V ( ω 1 ) + k H ( ω 2 ) } L c .
φ a ( t ) = { ( D a L a ) 1 D a L b D b L c t D a ( L a + L b ) D b L c 0 otherwise
ϕ b ( t ) = { ( D b L b ) 1 D b L b + D a L c t D a L c 0 otherwise .

Metrics