Abstract

In this paper, we proposed a new approach to notably enhance the compression rate of integral images by using the motion-compensated residual images (MCRIs). In the proposed method, sub-images (SIs) transformed from the picked-up elemental images of a three-dimensional (3-D) object, are sequentially rearranged with a spiral scanning topology. The moving vectors among the SIs, then, are estimated and compensated with the block-matching algorithm. Furthermore, spatial redundancy among the SIs is also removed by computing the differences between the local SIs and their motion-compensated versions, from which a sequence of MCRIs are finally generated and compressed with the MPEG-4 algorithm. Experimental results show that the compression efficiency of the proposed method has been improved up to 861.1% on average from that of the JPEG-based elemental images (EIs) method, and up to 1,497.0% and 118.8% on average from those of the MPEG-based MCSIs and the MPEG-based RIs method, respectively.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “La photographie integrale,” Comptes-Rendus Academie des Sciences 146, 446–451 (1908).
  2. S. A. Benton, ed., Selected Papers on Three-Dimensional Displays (SPIE Optical Engineering Press, 2001).
  3. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603 (1997).
    [CrossRef] [PubMed]
  4. D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
    [CrossRef] [PubMed]
  5. B.-G. Lee, H.-H. Kang, and E.-S. Kim, “Occlusion removal method of partially occluded object using variance in computational integral imaging,” 3D Res. 1(2), 2.1–2.5 (2010).
    [CrossRef]
  6. S.-C. Kim, C.-K. Kim, and E.-S. Kim, “Depth-of-focus and resolution-enhanced three-dimensional integral imaging with non-uniform lenslets and intermediate-view reconstruction technique,” 3D Res. 2(2), 2.1–2.9 (2011).
    [CrossRef]
  7. P. B. Han, Y. Piao, and E.-S. Kim, “Accelerated reconstruction of 3-D object images using estimated object area in backward computational integral imaging reconstruction,” 3D Res. 1, 4.1–4.8 (2011).
  8. S.-H. Hong and B. Javidi, “Improved resolution 3-D object reconstruction using computational II with time multiplexing,” Opt. Express 12(19), 4579–4588 (2004).
    [CrossRef] [PubMed]
  9. J.-B. Hyun, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images,” Appl. Opt. 46(31), 7697–7708 (2007).
    [CrossRef] [PubMed]
  10. Y. Piao and E.-S. Kim, “Resolution-enhanced reconstruction of far 3-D objects by using a direct pixel mapping method in computational curving-effective integral imaging,” Appl. Opt. 48(34), H222–H230 (2009).
    [CrossRef] [PubMed]
  11. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27(5), 324–326 (2002).
    [CrossRef] [PubMed]
  12. J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45(11), 117004 (2006).
    [CrossRef]
  13. H.-H. Kang, B.-G. Lee, and E.-S. Kim, “Efficient compression of rearranged time-multiplexed elemental image arrays in MALT-based three-dimensional integral imaging,” Opt. Commun. 284(13), 3227–3233 (2011).
    [CrossRef]
  14. O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40(20), 3318–3325 (2001).
    [CrossRef] [PubMed]
  15. M. Forman and A. Aggoun, “Quantization strategies for 3D-DCT based compression of full parallax 3D images,” in Proceedings of IEEE 6th International Conference on Image Processing and Applications, IPA97, No. 443, 32–35 (1997).
  16. S. Yeom, A. Stern, and B. Javidi, “Compression of 3D color integral images,” Opt. Express 12(8), 1632–1642 (2004).
    [CrossRef] [PubMed]
  17. J.-S. Jang, S. Yeom, and B. Javidi, “Compression of ray information in three-dimensional integral imaging,” Opt. Eng. 44(12), 127001 (2005).
    [CrossRef]
  18. H.-H. Kang, D.-H. Shin, and E.-S. Kim, “Compression scheme of sub-images using Karhunen-Loeve transform in three-dimensional integral imaging,” Opt. Commun. 281(14), 3640–3647 (2008).
    [CrossRef]
  19. H.-H. Kang, D.-H. Shin, and E.-S. Kim, “Efficient compression of motion-compensated sub-images with Karhunen-Loeve transform in three-dimensional integral imaging,” Opt. Commun. 283(6), 920–928 (2010).
    [CrossRef]
  20. C.-H. Yoo, H.-H. Kang, and E.-S. Kim, “Enhanced compression of integral images by combined use of residual images and MPEG-4 algorithm in three-dimensional integral imaging,” Opt. Commun. 284(20), 4884–4893 (2011).
    [CrossRef]
  21. J.-H. Park, J.-H. Kim, and B.-H. Lee, “Three-dimensional optical correlator using a sub-image array,” Opt. Express 13(13), 5116–5126 (2005).
    [CrossRef] [PubMed]
  22. J.-S. Lee, J.-H. Ko, and E.-S. Kim, “Real-time stereo object tracking system by using block matching algorithm and optical binary phase extraction joint transform correlator,” Opt. Commun. 191(3-6), 191–202 (2001).
    [CrossRef]
  23. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, eds., Digital Image Processing (Pearson Prentice Hall, 2008).
  24. I. E. G. Richardson, ed., H.264 and MPEG-4 video compression (Wiley, 2003).
  25. D. S. Taubman and M. W. Marcellin, eds., JPEG2000-Image Compression Fundamentals, Standards and Practice, (Kluwer Academic Publishers, 2002).
  26. A. Barjatya, “Block matching algorithms for motion estimation,” (2005), Matlab central: http://www.mathworks.com/matlabcentral/fileexchange/8761 .

2011 (4)

S.-C. Kim, C.-K. Kim, and E.-S. Kim, “Depth-of-focus and resolution-enhanced three-dimensional integral imaging with non-uniform lenslets and intermediate-view reconstruction technique,” 3D Res. 2(2), 2.1–2.9 (2011).
[CrossRef]

P. B. Han, Y. Piao, and E.-S. Kim, “Accelerated reconstruction of 3-D object images using estimated object area in backward computational integral imaging reconstruction,” 3D Res. 1, 4.1–4.8 (2011).

H.-H. Kang, B.-G. Lee, and E.-S. Kim, “Efficient compression of rearranged time-multiplexed elemental image arrays in MALT-based three-dimensional integral imaging,” Opt. Commun. 284(13), 3227–3233 (2011).
[CrossRef]

C.-H. Yoo, H.-H. Kang, and E.-S. Kim, “Enhanced compression of integral images by combined use of residual images and MPEG-4 algorithm in three-dimensional integral imaging,” Opt. Commun. 284(20), 4884–4893 (2011).
[CrossRef]

2010 (2)

H.-H. Kang, D.-H. Shin, and E.-S. Kim, “Efficient compression of motion-compensated sub-images with Karhunen-Loeve transform in three-dimensional integral imaging,” Opt. Commun. 283(6), 920–928 (2010).
[CrossRef]

B.-G. Lee, H.-H. Kang, and E.-S. Kim, “Occlusion removal method of partially occluded object using variance in computational integral imaging,” 3D Res. 1(2), 2.1–2.5 (2010).
[CrossRef]

2009 (1)

2008 (1)

H.-H. Kang, D.-H. Shin, and E.-S. Kim, “Compression scheme of sub-images using Karhunen-Loeve transform in three-dimensional integral imaging,” Opt. Commun. 281(14), 3640–3647 (2008).
[CrossRef]

2007 (1)

2006 (2)

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45(11), 117004 (2006).
[CrossRef]

D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[CrossRef] [PubMed]

2005 (2)

J.-S. Jang, S. Yeom, and B. Javidi, “Compression of ray information in three-dimensional integral imaging,” Opt. Eng. 44(12), 127001 (2005).
[CrossRef]

J.-H. Park, J.-H. Kim, and B.-H. Lee, “Three-dimensional optical correlator using a sub-image array,” Opt. Express 13(13), 5116–5126 (2005).
[CrossRef] [PubMed]

2004 (2)

2002 (1)

2001 (2)

O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40(20), 3318–3325 (2001).
[CrossRef] [PubMed]

J.-S. Lee, J.-H. Ko, and E.-S. Kim, “Real-time stereo object tracking system by using block matching algorithm and optical binary phase extraction joint transform correlator,” Opt. Commun. 191(3-6), 191–202 (2001).
[CrossRef]

1997 (1)

1908 (1)

G. Lippmann, “La photographie integrale,” Comptes-Rendus Academie des Sciences 146, 446–451 (1908).

Arai, J.

Han, P. B.

P. B. Han, Y. Piao, and E.-S. Kim, “Accelerated reconstruction of 3-D object images using estimated object area in backward computational integral imaging reconstruction,” 3D Res. 1, 4.1–4.8 (2011).

Hong, S.-H.

Hoshino, H.

Hwang, D.-C.

Hyun, J.-B.

Jang, J.-S.

J.-S. Jang, S. Yeom, and B. Javidi, “Compression of ray information in three-dimensional integral imaging,” Opt. Eng. 44(12), 127001 (2005).
[CrossRef]

J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27(5), 324–326 (2002).
[CrossRef] [PubMed]

Javidi, B.

Kang, H.-H.

C.-H. Yoo, H.-H. Kang, and E.-S. Kim, “Enhanced compression of integral images by combined use of residual images and MPEG-4 algorithm in three-dimensional integral imaging,” Opt. Commun. 284(20), 4884–4893 (2011).
[CrossRef]

H.-H. Kang, B.-G. Lee, and E.-S. Kim, “Efficient compression of rearranged time-multiplexed elemental image arrays in MALT-based three-dimensional integral imaging,” Opt. Commun. 284(13), 3227–3233 (2011).
[CrossRef]

B.-G. Lee, H.-H. Kang, and E.-S. Kim, “Occlusion removal method of partially occluded object using variance in computational integral imaging,” 3D Res. 1(2), 2.1–2.5 (2010).
[CrossRef]

H.-H. Kang, D.-H. Shin, and E.-S. Kim, “Efficient compression of motion-compensated sub-images with Karhunen-Loeve transform in three-dimensional integral imaging,” Opt. Commun. 283(6), 920–928 (2010).
[CrossRef]

H.-H. Kang, D.-H. Shin, and E.-S. Kim, “Compression scheme of sub-images using Karhunen-Loeve transform in three-dimensional integral imaging,” Opt. Commun. 281(14), 3640–3647 (2008).
[CrossRef]

Kim, C.-K.

S.-C. Kim, C.-K. Kim, and E.-S. Kim, “Depth-of-focus and resolution-enhanced three-dimensional integral imaging with non-uniform lenslets and intermediate-view reconstruction technique,” 3D Res. 2(2), 2.1–2.9 (2011).
[CrossRef]

Kim, E.-S.

S.-C. Kim, C.-K. Kim, and E.-S. Kim, “Depth-of-focus and resolution-enhanced three-dimensional integral imaging with non-uniform lenslets and intermediate-view reconstruction technique,” 3D Res. 2(2), 2.1–2.9 (2011).
[CrossRef]

P. B. Han, Y. Piao, and E.-S. Kim, “Accelerated reconstruction of 3-D object images using estimated object area in backward computational integral imaging reconstruction,” 3D Res. 1, 4.1–4.8 (2011).

H.-H. Kang, B.-G. Lee, and E.-S. Kim, “Efficient compression of rearranged time-multiplexed elemental image arrays in MALT-based three-dimensional integral imaging,” Opt. Commun. 284(13), 3227–3233 (2011).
[CrossRef]

C.-H. Yoo, H.-H. Kang, and E.-S. Kim, “Enhanced compression of integral images by combined use of residual images and MPEG-4 algorithm in three-dimensional integral imaging,” Opt. Commun. 284(20), 4884–4893 (2011).
[CrossRef]

H.-H. Kang, D.-H. Shin, and E.-S. Kim, “Efficient compression of motion-compensated sub-images with Karhunen-Loeve transform in three-dimensional integral imaging,” Opt. Commun. 283(6), 920–928 (2010).
[CrossRef]

B.-G. Lee, H.-H. Kang, and E.-S. Kim, “Occlusion removal method of partially occluded object using variance in computational integral imaging,” 3D Res. 1(2), 2.1–2.5 (2010).
[CrossRef]

Y. Piao and E.-S. Kim, “Resolution-enhanced reconstruction of far 3-D objects by using a direct pixel mapping method in computational curving-effective integral imaging,” Appl. Opt. 48(34), H222–H230 (2009).
[CrossRef] [PubMed]

H.-H. Kang, D.-H. Shin, and E.-S. Kim, “Compression scheme of sub-images using Karhunen-Loeve transform in three-dimensional integral imaging,” Opt. Commun. 281(14), 3640–3647 (2008).
[CrossRef]

J.-B. Hyun, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images,” Appl. Opt. 46(31), 7697–7708 (2007).
[CrossRef] [PubMed]

D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[CrossRef] [PubMed]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45(11), 117004 (2006).
[CrossRef]

J.-S. Lee, J.-H. Ko, and E.-S. Kim, “Real-time stereo object tracking system by using block matching algorithm and optical binary phase extraction joint transform correlator,” Opt. Commun. 191(3-6), 191–202 (2001).
[CrossRef]

Kim, J.-H.

Kim, S.-C.

S.-C. Kim, C.-K. Kim, and E.-S. Kim, “Depth-of-focus and resolution-enhanced three-dimensional integral imaging with non-uniform lenslets and intermediate-view reconstruction technique,” 3D Res. 2(2), 2.1–2.9 (2011).
[CrossRef]

D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[CrossRef] [PubMed]

Ko, J.-H.

J.-S. Lee, J.-H. Ko, and E.-S. Kim, “Real-time stereo object tracking system by using block matching algorithm and optical binary phase extraction joint transform correlator,” Opt. Commun. 191(3-6), 191–202 (2001).
[CrossRef]

Lee, B.-G.

H.-H. Kang, B.-G. Lee, and E.-S. Kim, “Efficient compression of rearranged time-multiplexed elemental image arrays in MALT-based three-dimensional integral imaging,” Opt. Commun. 284(13), 3227–3233 (2011).
[CrossRef]

B.-G. Lee, H.-H. Kang, and E.-S. Kim, “Occlusion removal method of partially occluded object using variance in computational integral imaging,” 3D Res. 1(2), 2.1–2.5 (2010).
[CrossRef]

Lee, B.-H.

Lee, J.-S.

J.-S. Lee, J.-H. Ko, and E.-S. Kim, “Real-time stereo object tracking system by using block matching algorithm and optical binary phase extraction joint transform correlator,” Opt. Commun. 191(3-6), 191–202 (2001).
[CrossRef]

Lippmann, G.

G. Lippmann, “La photographie integrale,” Comptes-Rendus Academie des Sciences 146, 446–451 (1908).

Matoba, O.

Okano, F.

Park, J.-H.

Park, J.-S.

D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[CrossRef] [PubMed]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45(11), 117004 (2006).
[CrossRef]

Piao, Y.

P. B. Han, Y. Piao, and E.-S. Kim, “Accelerated reconstruction of 3-D object images using estimated object area in backward computational integral imaging reconstruction,” 3D Res. 1, 4.1–4.8 (2011).

Y. Piao and E.-S. Kim, “Resolution-enhanced reconstruction of far 3-D objects by using a direct pixel mapping method in computational curving-effective integral imaging,” Appl. Opt. 48(34), H222–H230 (2009).
[CrossRef] [PubMed]

Shin, D.-H.

H.-H. Kang, D.-H. Shin, and E.-S. Kim, “Efficient compression of motion-compensated sub-images with Karhunen-Loeve transform in three-dimensional integral imaging,” Opt. Commun. 283(6), 920–928 (2010).
[CrossRef]

H.-H. Kang, D.-H. Shin, and E.-S. Kim, “Compression scheme of sub-images using Karhunen-Loeve transform in three-dimensional integral imaging,” Opt. Commun. 281(14), 3640–3647 (2008).
[CrossRef]

J.-B. Hyun, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images,” Appl. Opt. 46(31), 7697–7708 (2007).
[CrossRef] [PubMed]

D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[CrossRef] [PubMed]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45(11), 117004 (2006).
[CrossRef]

Stern, A.

Tajahuerce, E.

Yeom, S.

J.-S. Jang, S. Yeom, and B. Javidi, “Compression of ray information in three-dimensional integral imaging,” Opt. Eng. 44(12), 127001 (2005).
[CrossRef]

S. Yeom, A. Stern, and B. Javidi, “Compression of 3D color integral images,” Opt. Express 12(8), 1632–1642 (2004).
[CrossRef] [PubMed]

Yoo, C.-H.

C.-H. Yoo, H.-H. Kang, and E.-S. Kim, “Enhanced compression of integral images by combined use of residual images and MPEG-4 algorithm in three-dimensional integral imaging,” Opt. Commun. 284(20), 4884–4893 (2011).
[CrossRef]

Yuyama, I.

3D Res. (3)

B.-G. Lee, H.-H. Kang, and E.-S. Kim, “Occlusion removal method of partially occluded object using variance in computational integral imaging,” 3D Res. 1(2), 2.1–2.5 (2010).
[CrossRef]

S.-C. Kim, C.-K. Kim, and E.-S. Kim, “Depth-of-focus and resolution-enhanced three-dimensional integral imaging with non-uniform lenslets and intermediate-view reconstruction technique,” 3D Res. 2(2), 2.1–2.9 (2011).
[CrossRef]

P. B. Han, Y. Piao, and E.-S. Kim, “Accelerated reconstruction of 3-D object images using estimated object area in backward computational integral imaging reconstruction,” 3D Res. 1, 4.1–4.8 (2011).

Appl. Opt. (5)

Comptes-Rendus Academie des Sciences (1)

G. Lippmann, “La photographie integrale,” Comptes-Rendus Academie des Sciences 146, 446–451 (1908).

Opt. Commun. (5)

H.-H. Kang, B.-G. Lee, and E.-S. Kim, “Efficient compression of rearranged time-multiplexed elemental image arrays in MALT-based three-dimensional integral imaging,” Opt. Commun. 284(13), 3227–3233 (2011).
[CrossRef]

H.-H. Kang, D.-H. Shin, and E.-S. Kim, “Compression scheme of sub-images using Karhunen-Loeve transform in three-dimensional integral imaging,” Opt. Commun. 281(14), 3640–3647 (2008).
[CrossRef]

H.-H. Kang, D.-H. Shin, and E.-S. Kim, “Efficient compression of motion-compensated sub-images with Karhunen-Loeve transform in three-dimensional integral imaging,” Opt. Commun. 283(6), 920–928 (2010).
[CrossRef]

C.-H. Yoo, H.-H. Kang, and E.-S. Kim, “Enhanced compression of integral images by combined use of residual images and MPEG-4 algorithm in three-dimensional integral imaging,” Opt. Commun. 284(20), 4884–4893 (2011).
[CrossRef]

J.-S. Lee, J.-H. Ko, and E.-S. Kim, “Real-time stereo object tracking system by using block matching algorithm and optical binary phase extraction joint transform correlator,” Opt. Commun. 191(3-6), 191–202 (2001).
[CrossRef]

Opt. Eng. (2)

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45(11), 117004 (2006).
[CrossRef]

J.-S. Jang, S. Yeom, and B. Javidi, “Compression of ray information in three-dimensional integral imaging,” Opt. Eng. 44(12), 127001 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Other (6)

M. Forman and A. Aggoun, “Quantization strategies for 3D-DCT based compression of full parallax 3D images,” in Proceedings of IEEE 6th International Conference on Image Processing and Applications, IPA97, No. 443, 32–35 (1997).

S. A. Benton, ed., Selected Papers on Three-Dimensional Displays (SPIE Optical Engineering Press, 2001).

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, eds., Digital Image Processing (Pearson Prentice Hall, 2008).

I. E. G. Richardson, ed., H.264 and MPEG-4 video compression (Wiley, 2003).

D. S. Taubman and M. W. Marcellin, eds., JPEG2000-Image Compression Fundamentals, Standards and Practice, (Kluwer Academic Publishers, 2002).

A. Barjatya, “Block matching algorithms for motion estimation,” (2005), Matlab central: http://www.mathworks.com/matlabcentral/fileexchange/8761 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Optical setup for picking up the EIA of a 3-D object.

Fig. 2
Fig. 2

Conceptual diagram of an EIA-to-SIA transformation process.

Fig. 3
Fig. 3

Configuration of the ray analysis for the transformed SIs.

Fig. 4
Fig. 4

Overall block-diagram of the proposed compression method.

Fig. 5
Fig. 5

Rearrangement of the SIA into a sequence of SIs by spiral scanning: (a) Segmentation of SIs with spiral scanning topology, (b) Sequentially rearranged SIs.

Fig. 6
Fig. 6

Flowchart of the proposed motion estimation and compensation process based on the block-matching algorithm.

Fig. 7
Fig. 7

A process of motion estimation and compensation and computation of MCRI: (a) Block α in the reference sub-image, (b) Matching block β in the ith sub-image, (c) Shifting the reference sub-image from α to β for motion-compensation, (d) Motion-compensated version of ith sub-image of (b), (e) MCRI computed between the ith sub-image of (b) and its motion-compensated version of (d), (f) Reconstructed object image.

Fig. 8
Fig. 8

Generation process of a sequence of MCRIs in the proposed method: (a) Local SIs, (b) Motion-compensated versions of the local SIs, (c) MCRIs.

Fig. 9
Fig. 9

Reconstruction process of the SIs from the received C-MCRIs: (a) Decoded MCRIs, (b) Decoded motion-compensated versions of SIs (Decoded MCSIs), (c) Decoded local Sis.

Fig. 10
Fig. 10

Experimental set-up for picking up the EIA of the test object ‘Car’.

Fig. 11
Fig. 11

Three cases of the test object ‘Car’ for experiments: (a) Car_30, (b) Car_60, (c) Car_120.

Fig. 12
Fig. 12

Three kinds of picked-up EIAs (a)-(c) and its corresponding SIAs (a′)-(c′) for each case of Car_30, Car_60, and Car_120.

Fig. 13
Fig. 13

Sequences of local SIs (a)-(c) and their motion-compensated versions (a′)-(c′) for each case of Car_30, Car_60 and Car_120.

Fig. 14
Fig. 14

Sequences of MCRIs generated from the local SIs and their motion-compensated versions for each case of (a) Car_30, (b) Car_60 and (c) Car_120.

Fig. 15
Fig. 15

Calculated CR and PSNR values of the proposed and the JPEG-based EIs method.

Fig. 16
Fig. 16

Calculated CR and PSNR values of the proposed and the conventional MPEG-based MCSIs method.

Fig. 17
Fig. 17

Calculated CR and PSNR values of the proposed and the conventional MPEG-based RIs method.

Fig. 18
Fig. 18

Decoded SIs, EIs and reconstructed object images for each case of (a) Car_120 and ω = 2, (b) Car_120 and ω = 5 and (c) Car_120 and ω = 9.

Fig. 19
Fig. 19

Time responses for motion-compensation of each local sub-image: (a) In the encoding process, (b) In the decoding.

Tables (3)

Tables Icon

Table 1 ACQ value of the EIA and the SIA for each case of Fig. 11

Tables Icon

Table 2 Comparison of the CR between the Proposed and the Conventional Methods

Tables Icon

Table 3 Time Responses for the Encoding and Reconstruction Processes for Three Cases

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

S( i sy , j sx )= E ¯ ( p y r y + q y t y , p x r y + q x t x )
tan θ i = y i f
L=btan θ i =b y i f
MSE= 1 N×M i=1 N j=1 M ( C ij R ij ) 2
P r ( i,j )= ( P o (i,j) P c (i,j) )+ P max ω , for { i = 1, , n j = 1, , m
P o (i,j)=ω×( P r (i,j) P max ω )+ P c (i,j), for { i = 1, , n j = 1, , m
CQ= m=1 M n=1 N { E i ( m,n ) E j ( m,n ) E i 2 ( m,n ) } ,
ACQ= 1 P i=1 P [ m=1 M n=1 N { E i ( m,n ) E j ( m,n ) E i 2 ( m,n ) } ] ,
CR= Original image size (bytes) Compressed image size (bytes)
PSNR( I o , I c )=10log( 255 2 MSE ).

Metrics