Abstract

A new intracavity laser polarization-mode selection scheme relying upon a TE/TM diffractive dichroism principle in a grating multilayer mirror is proposed and demonstrated. The grating diffracts the first orders between the TE and TM band edges of the angular spectra of the laser mirror inducing a leakage of the TM polarization into the mirror substrate through the multilayer stack whereas TE diffraction into the substrate is forbidden. This mechanism is non-resonant, thus relatively wide-band. Applied with a circular-line grating in the 1.0µm - 1.1µm wavelength range, this mirror filters out the radially polarization mode and causes the emission of the azimuthally polarized mode. An original amorphous silicon grating technology was developed and the optical function demonstrated in a Nd:YAG laser.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Niziev and A. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
    [CrossRef]
  2. P. Muys and M. Youn, “Mathematical modeling of laser sublimation cutting,” Laser Phys. 18(4), 495–499 (2008).
    [CrossRef]
  3. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [CrossRef] [PubMed]
  4. D. P. Biss and T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28(11), 923–925 (2003).
    [CrossRef] [PubMed]
  5. R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14(7), 1627–1636 (1997).
    [CrossRef]
  6. T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34(1/3), 63–70 (2002).
    [CrossRef]
  7. J. L. Li, K. Ueda, L. X. Zhong, M. Musha, A. Shirakawa, and T. Sato, “Efficient excitations of radially and azimuthally polarized Nd3+:YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5/SiO2.,” Opt. Express 16(14), 10841–10848 (2008).
    [CrossRef] [PubMed]
  8. T. Moser, J. Balmer, D. Delbeke, P. Muys, S. Verstuyft, and R. Baets, “Intracavity generation of radially polarized CO2 laser beams based on a simple binary dielectric diffraction grating,” Appl. Opt. 45(33), 8517–8522 (2006).
    [CrossRef] [PubMed]
  9. C. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol. 26(1), 014043 (2011).
    [CrossRef]
  10. F. Pigeon, O. Parriaux, Y. Ouerdane, and A. Tishchenko, “Polarizing grating mirror for CW Nd: YAG microchip lasers,” IEEE Photon. Technol. Lett. 12(6), 648–650 (2000).
    [CrossRef]
  11. J. Bisson, O. Parriaux, F. Pigeon, A. Tishchenko, N. Lyndin, and K. Ueda, “1-nm line-width, flux-resistant laser mirror using a resonant grating,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (Institute of Electrical and Electronics Engineers, New York, 2005), 433–434 (2005).
  12. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007).
    [CrossRef] [PubMed]
  13. M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
    [CrossRef] [PubMed]
  14. J. Lekner, “Light in periodically stratified media,” J. Opt. Soc. Am. A 11(11), 2892–2899 (1994).
    [CrossRef]
  15. N. Lyndin , “MC Grating,” http://www.mcgrating.com .
  16. A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
    [CrossRef]

2011 (1)

C. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol. 26(1), 014043 (2011).
[CrossRef]

2010 (1)

2008 (2)

2007 (1)

2006 (1)

2004 (1)

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

2003 (2)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

D. P. Biss and T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28(11), 923–925 (2003).
[CrossRef] [PubMed]

2002 (1)

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34(1/3), 63–70 (2002).
[CrossRef]

2000 (1)

F. Pigeon, O. Parriaux, Y. Ouerdane, and A. Tishchenko, “Polarizing grating mirror for CW Nd: YAG microchip lasers,” IEEE Photon. Technol. Lett. 12(6), 648–650 (2000).
[CrossRef]

1999 (1)

V. Niziev and A. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

1997 (1)

1994 (1)

Ahmed, M. A.

Baets, R.

Bailat, J.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Balmer, J.

Biss, D. P.

Brown, T. G.

Chang-Hasnain, C.

C. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol. 26(1), 014043 (2011).
[CrossRef]

Cheng, C. C.

Chou, H. P.

Delbeke, D.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Droz, C.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Fainman, Y.

Graf, T.

Ishino, N.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34(1/3), 63–70 (2002).
[CrossRef]

Kawakami, S.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34(1/3), 63–70 (2002).
[CrossRef]

Kraus, M.

Kroll, U.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Lekner, J.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Li, J. L.

Meier, J.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Michalowski, A.

Miura, K.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34(1/3), 63–70 (2002).
[CrossRef]

Moser, T.

Musha, M.

Muys, P.

Nesterov, A.

V. Niziev and A. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

Niziev, V.

V. Niziev and A. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

Ohtera, Y.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34(1/3), 63–70 (2002).
[CrossRef]

Ouerdane, Y.

F. Pigeon, O. Parriaux, Y. Ouerdane, and A. Tishchenko, “Polarizing grating mirror for CW Nd: YAG microchip lasers,” IEEE Photon. Technol. Lett. 12(6), 648–650 (2000).
[CrossRef]

Parriaux, O.

F. Pigeon, O. Parriaux, Y. Ouerdane, and A. Tishchenko, “Polarizing grating mirror for CW Nd: YAG microchip lasers,” IEEE Photon. Technol. Lett. 12(6), 648–650 (2000).
[CrossRef]

Pigeon, F.

F. Pigeon, O. Parriaux, Y. Ouerdane, and A. Tishchenko, “Polarizing grating mirror for CW Nd: YAG microchip lasers,” IEEE Photon. Technol. Lett. 12(6), 648–650 (2000).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Salvekar, A. A.

Sato, T.

J. L. Li, K. Ueda, L. X. Zhong, M. Musha, A. Shirakawa, and T. Sato, “Efficient excitations of radially and azimuthally polarized Nd3+:YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5/SiO2.,” Opt. Express 16(14), 10841–10848 (2008).
[CrossRef] [PubMed]

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34(1/3), 63–70 (2002).
[CrossRef]

Schade, H.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Scherer, A.

Shah, A.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Shirakawa, A.

Sun, P. C.

Tamamura, T.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34(1/3), 63–70 (2002).
[CrossRef]

Tishchenko, A.

F. Pigeon, O. Parriaux, Y. Ouerdane, and A. Tishchenko, “Polarizing grating mirror for CW Nd: YAG microchip lasers,” IEEE Photon. Technol. Lett. 12(6), 648–650 (2000).
[CrossRef]

Tyan, R. C.

Ueda, K.

Vallat-Sauvain, E.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Vanecek, M.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Verstuyft, S.

Vogel, M. M.

Voss, A.

Weber, R.

Wyrsch, N.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Xu, F.

Youn, M.

P. Muys and M. Youn, “Mathematical modeling of laser sublimation cutting,” Laser Phys. 18(4), 495–499 (2008).
[CrossRef]

Zhong, L. X.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

F. Pigeon, O. Parriaux, Y. Ouerdane, and A. Tishchenko, “Polarizing grating mirror for CW Nd: YAG microchip lasers,” IEEE Photon. Technol. Lett. 12(6), 648–650 (2000).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. D Appl. Phys. (1)

V. Niziev and A. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

Laser Phys. (1)

P. Muys and M. Youn, “Mathematical modeling of laser sublimation cutting,” Laser Phys. 18(4), 495–499 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34(1/3), 63–70 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Prog. Photovolt. Res. Appl. (1)

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Semicond. Sci. Technol. (1)

C. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol. 26(1), 014043 (2011).
[CrossRef]

Other (2)

N. Lyndin , “MC Grating,” http://www.mcgrating.com .

J. Bisson, O. Parriaux, F. Pigeon, A. Tishchenko, N. Lyndin, and K. Ueda, “1-nm line-width, flux-resistant laser mirror using a resonant grating,” in Proceedings of IEEE Conference on Lasers and Electro-Optics (Institute of Electrical and Electronics Engineers, New York, 2005), 433–434 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) sketch of the polarization selective multilayer grating mirror illustrating the polarization selective 1D photonic crystal character of the multilayer mirror (the zigzagging 1st order path in the layers is not represented); (b) Brewster angle and angular position of the TE- and TM-bandedge for a λ/4 stack with an infinite number of layers as a function of the refractive index contrast IC (angles measured in medium with low layer-stack index nl)

Fig. 2
Fig. 2

(a) Angular dependence of the reflection from a SiO2/HfO2 λ/4 stack of 39 layers, with layer-thicknesses set for perpendicular incidence (black) and 25° incidence (grey), (b) wavelength dependence of the reflection of the layerstack, optimized for 25°, with a 970nm period aSi grating on top (thickness 50nm, ridge width 485nm).

Fig. 3
Fig. 3

(a) Incidence angle dependence of the TE reflection of λ/4 layer stacks of SiO2 and HfO2 at 1050 nm wavelength, with layer thicknesses optimized for different incidence angles Θl;, (b) Incidence angle dependence of the reflection of the SiO2/HfO2 layer stack with 23 layers at 1.00, 1.05 and 1.10 µm wavelength after the numerical optimization for high reflection at Θl = 0° and Θl = ΘB

Fig. 4
Fig. 4

(a) Dependence of the reflection of the SiO2/HfO2 layer stack with 28 layers (same as in Fig. 3(b)) on the wavelength and the incidence angle for the TE and TM polarization, superimposed with the diffraction angle for gratings with 0.8 to 1.0 µm period; (b) sketch of the optimized polarization selective grating mirror, giving the height of the layers and the grating parameters (left), and the wavelength dependence of the reflection of the element (right).

Fig. 5
Fig. 5

(a) Fabrication steps of the polarization selective grating mirror; (b) SEM-image of a cross-section of the polarizing grating mirror; (c) Optical microscope top view of the central region of the circular-line grating.

Fig. 6
Fig. 6

(a) Calculated and measured TE and TM reflection spectra; (b)-(c) Intensity distribution in the beam cross section, observed on a fluorescent screen outside of the laser cavity: (b) without analyzer, (c) with linear analyzer having the indicated direction

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

cos( k l d l )cos( k h d h )Csin( k l d l )sin( k h d h )=cos( mπ /N )
with k l = k 0 n l cos( Θ l ); k h = k 0 ( n h 2 n l 2 sin 2 ( Θ l ) ) 1/2 ; k 0 = 2π /λ
and C TE = 1 2 ( k h k l + k l k h ); C TM = 1 2 ( n l 2 k h n h 2 k l + n h 2 k l n l 2 k h )
d= λ 4n
d l = λ 4 n l 2 n l 2 sin 2 Θ l ; d h = λ 4 n h 2 n l 2 sin 2 Θ l

Metrics