Abstract

In this paper we show how to advantageously combine two effects to enhance the sensitivity with depth in Fourier domain (FD) optical coherence tomography (OCT): Talbot bands (TB) and Gabor-based fusion (GF) technique. TB operation is achieved by routing the two beams, from the object arm and from the reference arm in the OCT interferometer, along parallel separate paths towards the spectrometer. By adjusting the lateral gap between the two beams in their way towards the spectrometer, the position for the maximum of contrast variation of spectral modulation versus the optical path difference in the interferometer is adjusted. For five values of the focus position, the gap between the two beams is readjusted to reach maximum sensitivity. Then, similar to the procedure employed in the GF technique, a compound image is formed by stitching together the parts of the five images that exhibited maximum brightness. The smaller the diameters of the two beams, the narrower the visibility profile versus depth in Talbot bands, which brings advantages in terms of mirror terms attenuation. However, this leads to a larger spot on the linear camera, which introduces losses, therefore the combined procedure, TB/GF is investigated for four different values of the beam diameters of the two beams. Future cameras with larger pixel size may take full advantage of the TB/GF procedure proposed here.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography - Technology and Applications (Springer, Berlin Heidelberg, 2008).
    [CrossRef]
  2. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [CrossRef] [PubMed]
  3. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).
    [CrossRef] [PubMed]
  4. A. B. Vakhtin, K. A. Peterson, and D. J. Kane, “Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram,” Opt. Lett. 31, 1271–1273 (2006).
    [CrossRef] [PubMed]
  5. A. Gh. Podoleanu, “Fiber optics, from sensing to non invasive high resolution medical imaging,” J. Lightwave Technol. 28, 624–640 (2010).
    [CrossRef]
  6. M. Wojtkowski, A. Kowalczyk, P. Targowski, and I. Gorczynska, “Fourier-domain optical coherence tomography: next step in optical imaging,” Opt. Appl. 32, 569–580 (2002).
  7. J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30, 147–149 (2005).
    [CrossRef] [PubMed]
  8. A. B. Vakhtin, K. A. Peterson, and D. J. Kane, “Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram,” Opt. Lett. 31, 1271–1273 (2006).
    [CrossRef] [PubMed]
  9. K. S. Lee, P. Meemon, W. Dallas, K. Hsu, and J. P. Rolland, “Dual detection full range frequency domain optical coherence tomography,” Opt. Lett. 35, 1058–1060 (2010).
    [CrossRef] [PubMed]
  10. P. Meemon, K.-S. Lee, and J. P. Rolland, “Doppler imaging with dual-detection full-range frequency domain optical coherence tomography,” Biomed. Opt. Express 1, 537–552 (2010).
    [CrossRef]
  11. A. H. Bachmann, R. A. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express 14, 1487–1496 (2006).
    [CrossRef] [PubMed]
  12. R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007).
    [CrossRef]
  13. M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers,” Opt. Express 13, 957–967 (2005).
    [CrossRef] [PubMed]
  14. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006).
    [CrossRef] [PubMed]
  15. H. Bernd, B. Povaay, A. Unterhuber, L. Wang, B. Hermann, S. Rey, G. Matz, and W. Drexler, “Fast dispersion encoded full range optical coherence tomography for retinal imaging at 800 nm and 1050 nm,” Opt. Express 18, 4898–4919 (2010).
    [CrossRef]
  16. A. Bradu and A. Gh. Podoleanu, “Attenuation of mirror image and enhancement of the signal-to-noise ratio in a Talbot bands optical coherence tomography system,” J. Biomed. Opt. 16, 076010 (2011).
    [CrossRef] [PubMed]
  17. A. Gh. Podoleanu and D. J. Woods, “Power-efficient Fourier domain optical coherence tomography setup for selection in the optical path difference sign using Talbot bands,” Opt. Lett. 32, 2300–2302 (2007).
    [CrossRef] [PubMed]
  18. A. Gh. Podoleanu, “Unique interpretation of Talbot bands and Fourier domain white light interferometry,” Opt. Express 15, 9867–9876 (2007).
    [CrossRef] [PubMed]
  19. F. Talbot, “An experiment on the interference of light,” Philos. Mag. 10, 364 (1837).
  20. A. L. King and R. Davis, “The Curious Bands of Talbot,” Am. J. Phys. 39, 1195–1198 (1971).
    [CrossRef]
  21. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K.-S. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express 18, 3632–3642 (2010).
    [CrossRef] [PubMed]
  22. Z. Hu, Y. Pan, and A. M. Rollins, “Analytical model of spectrometer-based two-beam spectral interferometer,” Appl. Opt. 46, 8499–8505 (2007).
    [CrossRef] [PubMed]
  23. M. Hughes, D. Woods, and A. Gh. Podoleanu, “Control of visibility profile in spectral low-coherence interferometry,” Electron. Lett. 4, 182–183 (2009).
    [CrossRef]
  24. D. Woods and A. Podoleanu, “Controlling the shape of Talbot bands visibility,” Opt. Express 16, 9654–9670 (2008).
    [CrossRef] [PubMed]

2011 (1)

A. Bradu and A. Gh. Podoleanu, “Attenuation of mirror image and enhancement of the signal-to-noise ratio in a Talbot bands optical coherence tomography system,” J. Biomed. Opt. 16, 076010 (2011).
[CrossRef] [PubMed]

2010 (5)

2009 (1)

M. Hughes, D. Woods, and A. Gh. Podoleanu, “Control of visibility profile in spectral low-coherence interferometry,” Electron. Lett. 4, 182–183 (2009).
[CrossRef]

2008 (2)

2007 (4)

2006 (4)

2005 (2)

2003 (1)

2002 (1)

M. Wojtkowski, A. Kowalczyk, P. Targowski, and I. Gorczynska, “Fourier-domain optical coherence tomography: next step in optical imaging,” Opt. Appl. 32, 569–580 (2002).

1971 (1)

A. L. King and R. Davis, “The Curious Bands of Talbot,” Am. J. Phys. 39, 1195–1198 (1971).
[CrossRef]

1837 (1)

F. Talbot, “An experiment on the interference of light,” Philos. Mag. 10, 364 (1837).

Aoki, G.

Bachmann, A. H.

Bernd, H.

Bradu, A.

A. Bradu and A. Gh. Podoleanu, “Attenuation of mirror image and enhancement of the signal-to-noise ratio in a Talbot bands optical coherence tomography system,” J. Biomed. Opt. 16, 076010 (2011).
[CrossRef] [PubMed]

Cable, A.

Chen, Y.

Chen, Z.

Choma, M. A.

Dallas, W.

Davis, R.

A. L. King and R. Davis, “The Curious Bands of Talbot,” Am. J. Phys. 39, 1195–1198 (1971).
[CrossRef]

Drexler, W.

Endo, T.

Fercher, A. F.

Fujimoto, J. G.

Gorczynska, I.

Hermann, B.

Hitzenberger, C. K.

Hsu, K.

Hu, Z.

Hughes, M.

M. Hughes, D. Woods, and A. Gh. Podoleanu, “Control of visibility profile in spectral low-coherence interferometry,” Electron. Lett. 4, 182–183 (2009).
[CrossRef]

Itoh, M.

Izatt, J. A.

Jiang, J.

Kane, D. J.

King, A. L.

A. L. King and R. Davis, “The Curious Bands of Talbot,” Am. J. Phys. 39, 1195–1198 (1971).
[CrossRef]

Kowalczyk, A.

M. Wojtkowski, A. Kowalczyk, P. Targowski, and I. Gorczynska, “Fourier-domain optical coherence tomography: next step in optical imaging,” Opt. Appl. 32, 569–580 (2002).

Lasser, T.

Lee, K. S.

Lee, K.-S.

Leitgeb, R.

Leitgeb, R. A.

Makita, S.

Matz, G.

Meemon, P.

Murali, S.

Nelson, J. S.

Pan, Y.

Peterson, K. A.

Podoleanu, A.

Podoleanu, A. Gh.

Potsaid, B.

Povaay, B.

Rey, S.

Rolland, J. P.

Rollins, A. M.

Sarunic, M. V.

Srinivasan, V. J.

Talbot, F.

F. Talbot, “An experiment on the interference of light,” Philos. Mag. 10, 364 (1837).

Targowski, P.

M. Wojtkowski, A. Kowalczyk, P. Targowski, and I. Gorczynska, “Fourier-domain optical coherence tomography: next step in optical imaging,” Opt. Appl. 32, 569–580 (2002).

Thompson, K. P.

Unterhuber, A.

Vakhtin, A. B.

Wang, L.

Wang, R. K.

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007).
[CrossRef]

Wojtkowski, M.

M. Wojtkowski, A. Kowalczyk, P. Targowski, and I. Gorczynska, “Fourier-domain optical coherence tomography: next step in optical imaging,” Opt. Appl. 32, 569–580 (2002).

Woods, D.

M. Hughes, D. Woods, and A. Gh. Podoleanu, “Control of visibility profile in spectral low-coherence interferometry,” Electron. Lett. 4, 182–183 (2009).
[CrossRef]

D. Woods and A. Podoleanu, “Controlling the shape of Talbot bands visibility,” Opt. Express 16, 9654–9670 (2008).
[CrossRef] [PubMed]

Woods, D. J.

Yang, C. H.

Yasuno, Y.

Yatagai, T.

Zhang, J.

Am. J. Phys. (1)

A. L. King and R. Davis, “The Curious Bands of Talbot,” Am. J. Phys. 39, 1195–1198 (1971).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007).
[CrossRef]

Biomed. Opt. Express (1)

Electron. Lett. (1)

M. Hughes, D. Woods, and A. Gh. Podoleanu, “Control of visibility profile in spectral low-coherence interferometry,” Electron. Lett. 4, 182–183 (2009).
[CrossRef]

J. Biomed. Opt. (1)

A. Bradu and A. Gh. Podoleanu, “Attenuation of mirror image and enhancement of the signal-to-noise ratio in a Talbot bands optical coherence tomography system,” J. Biomed. Opt. 16, 076010 (2011).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

Opt. Appl. (1)

M. Wojtkowski, A. Kowalczyk, P. Targowski, and I. Gorczynska, “Fourier-domain optical coherence tomography: next step in optical imaging,” Opt. Appl. 32, 569–580 (2002).

Opt. Express (8)

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

D. Woods and A. Podoleanu, “Controlling the shape of Talbot bands visibility,” Opt. Express 16, 9654–9670 (2008).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).
[CrossRef] [PubMed]

J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K.-S. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express 18, 3632–3642 (2010).
[CrossRef] [PubMed]

H. Bernd, B. Povaay, A. Unterhuber, L. Wang, B. Hermann, S. Rey, G. Matz, and W. Drexler, “Fast dispersion encoded full range optical coherence tomography for retinal imaging at 800 nm and 1050 nm,” Opt. Express 18, 4898–4919 (2010).
[CrossRef]

M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers,” Opt. Express 13, 957–967 (2005).
[CrossRef] [PubMed]

A. H. Bachmann, R. A. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express 14, 1487–1496 (2006).
[CrossRef] [PubMed]

A. Gh. Podoleanu, “Unique interpretation of Talbot bands and Fourier domain white light interferometry,” Opt. Express 15, 9867–9876 (2007).
[CrossRef] [PubMed]

Opt. Lett. (5)

Philos. Mag. (1)

F. Talbot, “An experiment on the interference of light,” Philos. Mag. 10, 364 (1837).

Other (1)

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography - Technology and Applications (Springer, Berlin Heidelberg, 2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of TB/GF/FD-OCT set-up. SLD: superluminescent diode, MO, MO1 - MO3: microscope objectives, SM: scanning mirror; TS1, TS2: translation stages; LR, LS: spectrometer collimators; BS: bulk beam-splitter; G: gap between the centers of two beams originating from the reference and object arms respectively; TG: transmission grating; FM: flat mirror, CCD1: linear CCD camera, CCD2: 2-D CCD camera to monitor the lateral displacement G.

Fig. 2
Fig. 2

Red: Normalized sensitivity profile of sinc function (M = 1024 pixels, λ = 0.840 μm, Δλ = 0.045 μm, OPD range −7.5 mm, 7.5 mm, that determines a maximum axial range in depth, measured in air of z0 = 3.75 mm). FFIR marks the axial range of the FD-OCT system. OPD20dB = 2z20dB = 5.5mm marks the OPD value where the sensitivity due to the sinc factor reduces by 10 times. All other triangular curves show the theoretical CTB factor for equal beam diameters of 10 mm and top-hat profiles for the power distribution within their section, for different gap values G. When the triangle base becomes narrower than the sinc factor, the FFIR of individual A-scans becomes smaller.

Fig. 3
Fig. 3

Usual adjustment of parameters in FD-OCT, where the CTB profile is wider than the sinc profile. Left: G = 0; Right: G = z0.

Fig. 4
Fig. 4

The case of CTB profile narrower than the sinc profile.

Fig. 5
Fig. 5

Collimators of focal length f = 75 mm. (a) GF/OCT image (left) obtained by shifting the focus into 5 equidistant depths as described in the text; (a) right: inferred A-scan intensity profile, obtained by averaging multiple adjacent A-scans in the B-scan on the left, for each pixel along the lateral side (vertical coordinate), (b) B-scan OCT images with sensitivity shifted in depth obtained by introducing Talbot bands and changing the focus in the object arm; (c) Left: TB/GF/OCT image obtained by stitching together the bordered parts within the green rectangles superposed on the images in (b); Right: corresponding inferred A-scan intensity profile.

Fig. 6
Fig. 6

LS and LR of focal length f = 40 mm: Top left: A-scan curves for gap G = 0, 0.94, 1.24, 1.73, 2.36 mm using a mirror as object. Top right: CCD2 images illustrating the amount of overlap of the two beams adjusted by the gap value, G. Middle left: GF/OCT image; Middle right: Average of A-scan profiles over the B-scan GF/OCT image on the left; Bottom left: TB/GF/OCT image: Bottom right: Average of A-scan profiles over the B-scan TB/GF/OCT image on the left.

Fig. 7
Fig. 7

LS and LR of focal length f = 30 mm: Top left: A-scan curves for gap G = 0, 0.38, 1.88, 2.84, 3.1 mm using a mirror as object. Top right: CCD2 images illustrating the amount of overlap of the two beams adjusted by the gap value, G. Middle left: GF/OCT image; Middle right: Average of A-scan profiles over the B-scan GF/OCT image on the left; Bottom left: TB/GF/OCT image: Bottom right: Average of A-scan profiles over the B-scan TB/GF/OCT image on the left.

Fig. 8
Fig. 8

LS and LR of focal length f = 18.24 mm: Top left: A-scan curves for gap G = 0, 0.25, 0.66, 0.89, 1.30 mm using a mirror as object. Top right: CCD2 images illustrating the amount of overlap of the two beams adjusted by the gap value, G. Middle left: GF/OCT image; Middle right: Average of A-scan profiles over the B-scan GF/OCT image on the left; Bottom left: TB/GF/OCT image: Bottom right: Average of A-scan profiles over the B-scan TB/GF/OCT image on the left.

Tables (1)

Tables Icon

Table 1 Theoretical and Experimental Parameters of the Set-up for Four Values of the Focal Length of the Collimators Launching the Two Beams Towards the Grating

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V ( O P D ) = C T B sin 2 ( ξ ) ξ 2
ξ = 2 π O P D M Δ λ λ 2
N = D a cos β
δ G = a cos β λ δ z f

Metrics